Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mika E. Mononen is active.

Publication


Featured researches published by Mika E. Mononen.


Journal of Biomechanics | 2012

Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—A 3D finite element analysis

Mika E. Mononen; M.T. Mikkola; Petro Julkunen; R. Ojala; Miika T. Nieminen; Jukka S. Jurvelin; Rami K. Korhonen

Collagen fibrils of articular cartilage have specific depth-dependent orientations and the fibrils bend in the cartilage surface to exhibit split-lines. Fibrillation of superficial collagen takes place in osteoarthritis. We aimed to investigate the effect of superficial collagen fibril patterns and collagen fibrillation of cartilage on stresses and strains within a knee joint. A 3D finite element model of a knee joint with cartilage and menisci was constructed based on magnetic resonance imaging. The fibril-reinforced poroviscoelastic material properties with depth-dependent collagen orientations and split-line patterns were included in the model. The effects of joint loading on stresses and strains in cartilage with various split-line patterns and medial collagen fibrillation were simulated under axial impact loading of 1000 N. In the model, the collagen fibrils resisted strains along the split-line directions. This increased also stresses along the split-lines. On the contrary, contact and pore pressures were not affected by split-line patterns. Simulated medial osteoarthritis increased tissue strains in both medial and lateral femoral condyles, and contact and pore pressures in the lateral femoral condyle. This study highlights the importance of the collagen fibril organization, especially that indicated by split-line patterns, for the weight-bearing properties of articular cartilage. Osteoarthritic changes of cartilage in the medial femoral condyle created a possible failure point in the lateral femoral condyle. This study provides further evidence on the importance of the collagen fibril organization for the optimal function of articular cartilage.


Journal of Biomechanics | 2013

Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.

K.S. Halonen; Mika E. Mononen; Jukka S. Jurvelin; Juha Töyräs; Rami K. Korhonen

Proteoglycans and collagen fibrils are distributed inhomogeneously throughout the depth of articular cartilage, providing the tissue with its unique depth-dependent properties and directly influencing local tissue deformations and stresses in in vitro/in situ. The aim of this study was to investigate the importance of the proteoglycan and collagen distributions for cartilage stresses and strains resulting from dynamic joint loading (i.e., a simulated gait cycle) and mechanical equilibrium in a knee joint. A 3D finite element model of a human knee joint including femoral and tibial cartilages and menisci was created. In order to characterize the effects of collagen orientation, collagen distribution and proteoglycan distribution on knee joint stresses and strains, five fibril-reinforced poroviscoelastic models with different depth-wise tissue structure were created. For each model strains and stresses were evaluated at four different depths in the medial tibial compartment during a gait cycle (simulating walking) and at mechanical equilibrium (simulating standing). The model with arcade-like collagen fibril architecture predicted substantially lower stresses than the homogeneous model, especially during dynamic joint loading. The depth-wise proteoglycan gradient caused a substantial increase in stresses and axial strains in the superficial layer, and reduced stresses and strains in the deep layer under static loading. The effect of fibril volume density distribution was minor during both dynamic joint loading and at mechanical equilibrium. The present study emphasizes the importance of the arcade-like collagen fibril orientation for cartilage function in a human knee joint. However, we suggest that, for practical reasons, a constant fibril volume density may be used in 3D models of knee joints, whereas a realistic depth-wise proteoglycan distribution should be applied when simulating the cartilage response during mechanical equilibrium.


Journal of Orthopaedic Research | 2013

Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle—A 3D finite element study

Mika E. Mononen; Jukka S. Jurvelin; Rami K. Korhonen

The purpose of the current study was to evaluate influences of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during normal walking by using computational modeling. A 3D geometry of a knee joint of a healthy patient was obtained from our previous study, whereas the data of normal walking were taken from the literature. Cartilage tissue was modeled as a fibril reinforced poroviscoelastic material, whereas meniscal tissue was modeled as a transverse isotropic elastic material. The realistic gait cycle data were implemented into the computational model and the effects of radial tears and partial meniscectemy of lateral meniscus on the knee joint mechanics were simulated. Middle, posterior, and anterior radial tears in lateral meniscus increased stresses by 300%, 430%, and 1530%, respectively, at the ends of tears compared to corresponding areas in the model with intact lateral meniscus. Meniscus tears did not alter stresses and strains at the tibial cartilage surface, whereas partial meniscectomy increased contact pressures, stresses, strains and pore pressures in the tibial cartilage by 50%, 44%, 21%, and 43%, respectively. Increased stresses and strains were observed primarily during the first ∼50% of the stance phase of the gait cycle. The present study suggests that anterior radial tear causes the highest risk for the development of total meniscal rupture, whereas partial meniscectomy increases the risk for the development of OA in lateral tibial cartilage. Highest risks for meniscus and cartilage failures are suggested to occur during the loading response and mid‐stance of the gait cycle. In the future, the present modeling may be further developed to offer a clinical tool for aid in decision making of clinical interventions for patients with knee joint injuries.


Biomechanics and Modeling in Mechanobiology | 2011

Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses

Mika E. Mononen; Petro Julkunen; Juha Töyräs; Jukka S. Jurvelin; Ilkka Kiviranta; Rami K. Korhonen

Organization of the collagen network is known to be different in healthy, osteoarthritic and repaired cartilage. The aim of the study was to investigate how the structure and properties of collagen network of cartilage modulate stresses in a knee joint with osteoarthritis or cartilage repair. Magnetic resonance imaging (MRI) at 1.5 T was conducted for a knee joint of a male subject. Articular cartilage and menisci in the knee joint were segmented, and a finite element mesh was constructed based on the two-dimensional section in sagittal projection. Then, the knee joint stresses were simulated under impact loads by implementing the structure and properties of healthy, osteoarthritic and repaired cartilage in the models. During the progression of osteoarthritis, characterized especially by the progressive increase in the collagen fibrillation from the superficial to the deeper layers, the stresses were reduced in the superficial zone of cartilage, while they were increased in and under menisci. Increased fibril network stiffness of repair tissue with randomly organized collagen fibril network reduced the peak stresses in the adjacent tissue and strains at the repair–adjacent cartilage interface. High collagen fibril strains were indicative of stress concentration areas in osteoarthritic and repaired cartilage. The collagen network orientation and stiffness controlled the stress distributions in healthy, osteoarthritic and repaired cartilage. The evaluation of articular cartilage function using clinical MRI and biomechanical modeling could enable noninvasive estimation of osteoarthritis progression and monitoring of cartilage repair. This study presents a step toward those goals.


Journal of Biomechanics | 2014

Deformation of articular cartilage during static loading of a knee joint – Experimental and finite element analysis

K.S. Halonen; Mika E. Mononen; Jukka S. Jurvelin; Juha Töyräs; Jari Salo; Rami K. Korhonen

Novel conical beam CT-scanners offer high resolution imaging of knee structures with i.a. contrast media, even under weight bearing. With this new technology, we aimed to determine cartilage strains and meniscal movement in a human knee at 0, 1, 5, and 30 min of standing and compare them to the subject-specific 3D finite element (FE) model. The FE model of the volunteer׳s knee, based on the geometry obtained from magnetic resonance images, was created to simulate the creep. The effects of collagen fibril network stiffness, nonfibrillar matrix modulus, permeability and fluid flow boundary conditions on the creep response in cartilage were investigated. In the experiment, 80% of the maximum strain in cartilage developed immediately, after which the cartilage continued to deform slowly until the 30 min time point. Cartilage strains and meniscus movement obtained from the FE model matched adequately with the experimentally measured values. Reducing the fibril network stiffness increased the mean strains substantially, while the creep rate was primarily influenced by an increase in the nonfibrillar matrix modulus. Changing the initial permeability and preventing fluid flow through noncontacting surfaces had a negligible effect on cartilage strains. The present results improve understanding of the mechanisms controlling articular cartilage strains and meniscal movements in a knee joint under physiological static loading. Ultimately a validated model could be used as a noninvasive diagnostic tool to locate cartilage areas at risk for degeneration.


Journal of Biomechanics | 2015

Characterization of site-specific biomechanical properties of human meniscus—Importance of collagen and fluid on mechanical nonlinearities

E.K. Danso; J.T.A. Mäkelä; Petri Tanska; Mika E. Mononen; Juuso T. J. Honkanen; Jukka S. Jurvelin; Juha Töyräs; Petro Julkunen; Rami K. Korhonen

Meniscus adapts to joint loads by depth- and site-specific variations in its composition and structure. However, site-specific mechanical characteristics of intact meniscus under compression are poorly known. In particular, mechanical nonlinearities caused by different meniscal constituents (collagen and fluid) are not known. In the current study, in situ indentation testing was conducted to determine site-specific elastic, viscoelastic and poroelastic properties of intact human menisci. Lateral and medial menisci (n=26) were harvested from the left knee joint of 13 human cadavers. Indentation tests, using stress-relaxation and dynamic (sinusoidal) loading protocols, were conducted for menisci at different sites (anterior, middle, posterior, n=78). Sample- and site-specific axisymmetric finite element models with fibril-reinforced poroelastic properties were fitted to the corresponding stress-relaxation curves to determine the mechanical parameters. Elastic moduli, especially the instantaneous and dynamic moduli, showed site-specific variation only in the medial meniscus (p<0.05 between the sites). The instantaneous and dynamic elastic moduli of the anterior horn were significantly (p<0.05) greater in the medial than lateral meniscus. The phase angle showed no statistically significant variation between the sites (p>0.05). The values for the strain-dependent fibril network modulus (nonlinear behaviour of collagen) were significantly different (p<0.05) between all sites in the medial menisci. Additionally, there was a significant difference (p<0.01) in the strain-dependent fibril network modulus between the lateral and medial anterior horns. The initial permeability was significantly different (p<0.05) in the medial meniscus only between the middle and posterior sites. For the strain-dependent permeability coefficient, only anterior and middle sites showed a significant difference (p<0.05) in the medial meniscus. This parameter demonstrated a significant difference (p<0.05) between lateral and medial menisci at the anterior horns. Our results reveal that under in situ indentation loading, medial meniscus shows more site-dependent variation in the mechanical properties as compared to lateral meniscus. In particular, anterior horn of medial meniscus was the stiffest and showed the most nonlinear mechanical behaviour. The nonlinearity was related to both collagen fibrils and fluid.


Computer Methods in Biomechanics and Biomedical Engineering | 2015

Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage

Mika E. Mononen; Jukka S. Jurvelin; Rami K. Korhonen

Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.


Journal of Biomechanics | 2015

A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking

Petri Tanska; Mika E. Mononen; Rami K. Korhonen

Mechanical signals experienced by chondrocytes (articular cartilage cells) modulate cell synthesis and cartilage health. Multi-scale modeling can be used to study how forces are transferred from joint surfaces through tissues to chondrocytes. Therefore, estimation of chondrocyte behavior during certain physical activities, such as walking, could provide information about how cells respond to normal and abnormal loading in joints. In this study, a 3D multi-scale model was developed for evaluating chondrocyte and surrounding peri- and extracellular matrix responses during gait loading within healthy and medial meniscectomy knee joints. The knee joint geometry was based on MRI, whereas the input used for gait loading was obtained from the literature. Femoral and tibial cartilages were modeled as fibril-reinforced poroviscoelastic materials, whereas menisci were considered as transversely isotropic. Fluid pressures in the chondrocyte and cartilage tissue increased up to 2MPa (an increase of 30%) in the meniscectomy joint compared to the normal, healthy joint. The elevated level of fluid pressure was observed during the entire stance phase of gait. A medial meniscectomy caused substantially larger (up to 60%) changes in maximum principal strains in the chondrocyte compared to those in the peri- or extracellular matrices. Chondrocyte volume or morphology did not change substantially due to a medial meniscectomy. Current findings suggest that during walking chondrocyte deformations are not substantially altered due to a medial meniscectomy, while abnormal joint loading exposes chondrocytes to elevated levels of fluid pressure and maximum principal strains (compared to strains in the peri- or extracellular matrices). These might contribute to cell viability and the onset of osteoarthritis.


Journal of Orthopaedic Research | 2013

Implementation of subject‐specific collagen architecture of cartilage into a 2D computational model of a knee joint—data from the osteoarthritis initiative (OAI)

Lasse P. Räsänen; Mika E. Mononen; Miika T. Nieminen; Eveliina Lammentausta; Jukka S. Jurvelin; Rami K. Korhonen

A subject‐specific collagen architecture of cartilage, obtained from T2 mapping of 3.0 T magnetic resonance imaging (MRI; data from the Osteoarthritis Initiative), was implemented into a 2D finite element model of a knee joint with fibril‐reinforced poroviscoelastic cartilage properties. For comparison, we created two models with alternative collagen architectures, addressing the potential inaccuracies caused by the nonoptimal estimation of the collagen architecture from MRI. Also two models with constant depth‐dependent zone thicknesses obtained from literature were created. The mechanical behavior of the models were analyzed and compared under axial impact loading of 846N. Compared to the model with patient‐specific collagen architecture, the cartilage model without tangentially oriented collagen fibrils in the superficial zone showed up to 69% decrease in maximum principal stress and fibril strain and 35% and 13% increase in maximum principal strain and pore pressure, respectively, in the superficial layers of the cartilage. The model with increased thickness for the superficial and middle zones, as obtained from the literature, demonstrated at most 73% increase in stress, 143% increase in fibril strain, and 26% and 23% decrease in strain and pore pressure, respectively, in the intermediate cartilage. The present results demonstrate that the computational model of a knee joint with the collagen architecture of cartilage estimated from patient‐specific MRI or literature lead to different stress and strain distributions. The findings also suggest that minor errors in the analysis of collagen architecture from MRI, for example due to the analysis method or MRI resolution, can lead to alterations in knee joint stresses and strains.


Scientific Reports | 2016

Quantitative Evaluation of the Mechanical Risks Caused by Focal Cartilage Defects in the Knee.

Mikko S. Venäläinen; Mika E. Mononen; Jari Salo; Lasse P. Räsänen; Jukka S. Jurvelin; Juha Töyräs; Tuomas Virén; Rami K. Korhonen

Focal cartilage lesions can proceed to severe osteoarthritis or remain unaltered even for years. A method to identify high risk defects would be of utmost importance to guide clinical decision making and to identify the patients that are at the highest risk for the onset and progression of osteoarthritis. Based on cone beam computed tomography arthrography, we present a novel computational model for evaluating changes in local mechanical responses around cartilage defects. Our model, based on data obtained from a human knee in vivo, demonstrated that the most substantial alterations around the defect, as compared to the intact tissue, were observed in minimum principal (compressive) strains and shear strains. Both strain values experienced up to 3-fold increase, exceeding levels previously associated with chondrocyte apoptosis and failure of collagen crosslinks. Furthermore, defects at the central regions of medial tibial cartilage with direct cartilage-cartilage contact were the most vulnerable to loading. Also locations under the meniscus experienced substantially increased minimum principal strains. We suggest that during knee joint loading particularly minimum principal and shear strains are increased above tissue failure limits around cartilage defects which might lead to osteoarthritis. However, this increase in strains is highly location-specific on the joint surface.

Collaboration


Dive into the Mika E. Mononen's collaboration.

Top Co-Authors

Avatar

Rami K. Korhonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Jukka S. Jurvelin

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Petri Tanska

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Juha Töyräs

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lasse P. Räsänen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

K.S. Halonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Mikko S. Venäläinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Mimmi K. Liukkonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge