Mika Kaneyasu
National Institute of Technology and Evaluation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mika Kaneyasu.
International Journal of Systematic and Evolutionary Microbiology | 2009
Taweesak Malimas; Pattaraporn Yukphan; Mai Takahashi; Yuki Muramatsu; Mika Kaneyasu; Wanchern Potacharoen; Somboon Tanasupawat; Yasuyoshi Nakagawa; Morakot Tanticharoen; Yuzo Yamada
Five strains, NBRC 3271(T), NBRC 3272, NBRC 3263, NBRC 3260 and NBRC 3269 were examined genetically, phylogenetically, phenotypically and chemotaxonomically. The DNA G+C contents of the five strains were 55.1-56.4 mol%. The five strains had low levels of DNA-DNA hybridization of 13-51 % to the type strains of Gluconobacter frateurii, Gluconobacter thailandicus, Gluconobacter oxydans, Gluconobacter cerinus, Gluconobacter albidus and Gluconobacter kondonii and formed a cluster that was separate from the type strains of the six Gluconobacter species given above in phylogenetic trees based on 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences. The five strains weakly produced dihydroxyacetone from glycerol, but not 2,5-diketo-d-gluconate or a water-soluble brown pigment from d-glucose and contained ubiquinone-10. The five strains were assigned as representing a novel species of the genus Gluconobacter, for which the name Gluconobacter japonicus sp. nov. is proposed. The type strain is NBRC 3271(T) (=BCC 14458(T)=strain 7(T), K. Kondo). Cells of the type strain are motile by means of polar flagella and the DNA G+C content is 56.4 mol%.
Bioscience, Biotechnology, and Biochemistry | 2008
Pattaraporn Yukphan; Taweesak Malimas; Yuki Muramatsu; Mai Takahashi; Mika Kaneyasu; Somboon Tanasupawat; Yasuyoshi Nakagawa; Ken-ichiro Suzuki; Wanchern Potacharoen; Yuzo Yamada
Tanticharoenia sakaeratensis gen. nov., sp. nov. is proposed for three strains isolated from soil collected in Thailand. The three strains, AC37T, AC38, and AC39, were included within a lineage comprising the genera Asaia, Kozakia, Swaminathania, Neoasaia, Acetobacter, Gluconobacter, and Saccharibacter in a phylogenetic tree based on 16S rRNA gene sequences, but formed a quite different, independent cluster. Pair-wise sequence similarities of strain AC37T were 96.5–92.1% to the type strains of Acetobacter aceti, Gluconobacter oxydans, Acidomonas methanolica, Gluconacetobacter liquefaciens, Asaia bogorensis, Kozakia baliensis, Swaminathania salitolerans, Saccharibacter floricola, Neoasaia chiangmaiensis, and Granulibacter bethesdensis. The three strains had DNA base compositions comprising respectively 65.6, 64.5, and 65.6 mol % G+C with a range of 1.1 mol %, and formed a single species. Phenotypically, the three strains did not oxidize acetate or lactate, but grew on 30% D-glucose (w/v). Chemotaxonomically, they had Q-10. The type strain is AC37T (= BCC 15772T = NBRC 103193T).
Bioscience, Biotechnology, and Biochemistry | 2008
Taweesak Malimas; Pattaraporn Yukphan; Mai Takahashi; Mika Kaneyasu; Wanchern Potacharoen; Somboon Tanasupawat; Yasuyoshi Nakagawa; Morakot Tanticharoen; Yuzo Yamada
Asaia lannaensis sp. nov. was described for two strains isolated from flowers of the spider lily collected in Chiang Mai, Thailand. The isolates produced acetic acid from ethanol on ethanol/calcium carbonate agar, differing from the type strains of Asaia bogorensis, Asaia siamensis, and Asaia krungthepensis, but did not grow in the presence of 0.35% acetic acid (v/v). The new species is the fourth of the genus Asaia, the family Acetobacteraceae.
Bioscience, Biotechnology, and Biochemistry | 2009
Pattaraporn Yukphan; Taweesak Malimas; Yuki Muramatsu; Mai Takahashi; Mika Kaneyasu; Wanchern Potacharoen; Somboon Tanasupawat; Yasuyoshi Nakagawa; Koei Hamana; Yasutaka Tahara; Ken-ichiro Suzuki; Morakot Tanticharoen; Yuzo Yamada
Two isolates, AC04T and AC05, were isolated from the flowers of red ginger collected in Chiang Mai, Thailand. In phylogenetic trees based on 16S rRNA gene sequences, the two isolates were included within a lineage comprised of the genera Acidomonas, Gluconacetobacter, Asaia, Kozakia, Swaminathania, Neoasaia, Granulibacter, and Tanticharoenia, and they formed an independent cluster along with the type strain of Tanticharoenia sakaeratensis. The calculated pair-wise sequence similarities of isolate AC04T were 97.8–92.5% to the type strains of the type species of the 11 genera of acetic acid bacteria. The DNA base composition was 66.0–66.1 mol % G+C with a range of 0.1 mol %. A single-stranded, labeled DNA from isolate AC04T presented levels of DNA-DNA hybridization of 100, 85, 4, and 3% respectively to DNAs from isolates AC04T and AC05 and the type strains of Tanticharoenia sakaeratensis and Gluconacetobacter liquefaciens. The two isolates were unique morphologically in polar flagellation and physiologically in intense acetate oxidation to carbon dioxide and water and weak lactate oxidation. The intensity in acetate oxidation almost equaled that of the type strain of Acetobacter aceti. The two isolates had Q-10. Isolate AC04T was discriminated from the type strains of the type species of the 11 genera by 16S rRNA gene restriction analysis using restriction endonucleases TaqI and Hin6I. The unique phylogenetic, genetic, morphological, physiological, and biochemical characteristics obtained indicate that the two isolates can be classified into a separate genus, and Ameyamaea chiangmaiensis gen. nov., sp. nov. is proposed. The type strain is isolate AC04T (=BCC 15744T, =NBRC 103196T), which has a DNA G+C content of 66.0 mol %.
Journal of General and Applied Microbiology | 2007
Taweesak Malimas; Pattaraporn Yukphan; Mai Takahashi; Mika Kaneyasu; Wanchern Potacharoen; Somboon Tanasupawat; Yasuyoshi Nakagawa; Morakot Tanticharoen; Yuzo Yamada
Journal of General and Applied Microbiology | 2008
Taweesak Malimas; Pattaraporn Yukphan; Mai Takahashi; Yuki Muramatsu; Mika Kaneyasu; Wanchern Potacharoen; Somboon Tanasupawat; Yasuyoshi Nakagawa; Morakot Tanticharoen; Yuzo Yamada
Journal of General and Applied Microbiology | 2010
Pattaraporn Yukphan; Taweesak Malimas; Tserennyam Lundaa; Yuki Muramatsu; Mai Takahashi; Mika Kaneyasu; Somboon Tanasupawat; Yasuyoshi Nakagawa; Ken-ichiro Suzuki; Morakot Tanticharoen; Yuzo Yamada
Journal of General and Applied Microbiology | 2008
Taweesak Malimas; Pattaraporn Yukphan; Mai Takahashi; Yuki Muramatsu; Mika Kaneyasu; Wanchern Potacharoen; Somboon Tanasupawat; Yasuyoshi Nakagawa; Morakot Tanticharoen; Yuzo Yamada
International Journal of Systematic and Evolutionary Microbiology | 2010
Yuki Muramatsu; Mai Takahashi; Mika Kaneyasu; Takao Iino; Ken-ichiro Suzuki; Yasuyoshi Nakagawa
Journal of General and Applied Microbiology | 2009
Taweesak Malimas; Pattaraporn Yukphan; Tserennyam Lundaa; Yuki Muramatsu; Mai Takahashi; Mika Kaneyasu; Wanchern Potacharoen; Somboon Tanasupawat; Yasuyoshi Nakagawa; Ken-ichiro Suzuki; Morakot Tanticharoen; Yuzo Yamada