Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mika Nomura is active.

Publication


Featured researches published by Mika Nomura.


Plant Physiology and Biochemistry | 2001

A genomics approach towards salt stress tolerance

Hans J. Bohnert; Patricia Ayoubi; Chris Borchert; Ray A. Bressan; Robert L. Burnap; John C. Cushman; Mary Ann Cushman; Michael K. Deyholos; Robert E. Fischer; David W. Galbraith; Paul M. Hasegawa; Matt Jenks; Shinji Kawasaki; Hisashi Koiwa; Shin Koreeda; Byeong-ha Lee; Chris B. Michalowski; Eduardo A. Misawa; Mika Nomura; Neslihan Z. Ozturk; Bradley L. Postier; Rolf A. Prade; Chun-Peng Song; Yuko Tanaka; Hong Wang; Jian-Kang Zhu

Abiotic stresses reduce plant productivity. We focus on gene expression analysis following exposure of plants to high salinity, using salt-shock experiments to mimic stresses that affect hydration and ion homeostasis. The approach includes parallel molecular and genetic experimentation. Comparative analysis is employed to identify functional isoforms and genetic orthologs of stress-regulated genes common to cyanobacteria, fungi, algae and higher plants. We analyze global gene expression profiles monitored under salt stress conditions through abundance profiles in several species: in the cyanobacterium SynechocystisPCC6803, in unicellular (Saccharomyces cerevisiae) and multicellular (Aspergillus nidulans) fungi, the eukaryotic alga Dunaliella salina, the halophytic land plant Mesembryanthemum crystallinum , the glycophytic Oryza sativa and the genetic model Arabidopsis thaliana. Expanding the gene count, stress brings about a significant increase of transcripts for which no function is known. Also, we generate insertional mutants that affect stress tolerance in several organisms. More than 400 000 T-DNA tagged lines of A. thaliana have been generated, and lines with altered salt stress responses have been obtained. Integration of these approaches defines stress phenotypes, catalogs of transcripts and a global representation of gene expression induced by salt stress. Determining evolutionary relationships among these genes, mutants and transcription profiles will provide categories and gene clusters, which reveal ubiquitous cellular aspects of salinity tolerance and unique solutions in multicellular species.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway

Shin Taketa; Satoko Amano; Yasuhiro Tsujino; Tomohiko Sato; Daisuke Saisho; Katsuyuki Kakeda; Mika Nomura; Toshisada Suzuki; Takashi Matsumoto; Kazuhiro Sato; Hiroyuki Kanamori; Shinji Kawasaki; Kazuyoshi Takeda

In contrast to other cereals, typical barley cultivars have caryopses with adhering hulls at maturity, known as covered (hulled) barley. However, a few barley cultivars are a free-threshing variant called naked (hulless) barley. The covered/naked caryopsis is controlled by a single locus (nud) on chromosome arm 7HL. On the basis of positional cloning, we concluded that an ethylene response factor (ERF) family transcription factor gene controls the covered/naked caryopsis phenotype. This conclusion was validated by (i) fixation of the 17-kb deletion harboring the ERF gene among all 100 naked cultivars studied; (ii) two x-ray-induced nud alleles with a DNA lesion at a different site, each affecting the putative functional motif; and (iii) gene expression strictly localized to the testa. Available results indicate the monophyletic origin of naked barley. The Nud gene has homology to the Arabidopsis WIN1/SHN1 transcription factor gene, whose deduced function is control of a lipid biosynthesis pathway. Staining with a lipophilic dye (Sudan black B) detected a lipid layer on the pericarp epidermis only in covered barley. We infer that, in covered barley, the contact of the caryopsis surface, overlaid with lipids to the inner side of the hull, generates organ adhesion.


Journal of Bacteriology | 2004

Expression Islands Clustered on the Symbiosis Island of the Mesorhizobium loti Genome

Toshiki Uchiumi; Takuji Ohwada; Manabu Itakura; Hisayuki Mitsui; Noriyuki Nukui; Pramod Dawadi; Takakazu Kaneko; Satoshi Tabata; Tadashi Yokoyama; Kouhei Tejima; Kazuhiko Saeki; Hirofumi Omori; Makoto Hayashi; Takaki Maekawa; Rutchadaporn Sriprang; Yoshikatsu Murooka; Shigeyuki Tajima; Kenshiro Simomura; Mika Nomura; Akihiro Suzuki; Yoshikazu Shimoda; Kouki Sioya; Mikiko Abe; Kiwamu Minamisawa

Rhizobia are symbiotic nitrogen-fixing soil bacteria that are associated with host legumes. The establishment of rhizobial symbiosis requires signal exchanges between partners in microaerobic environments that result in mutualism for the two partners. We developed a macroarray for Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, and monitored the transcriptional dynamics of the bacterium during symbiosis, microaerobiosis, and starvation. Global transcriptional profiling demonstrated that the clusters of genes within the symbiosis island (611 kb), a transmissible region distinct from other chromosomal regions, are collectively expressed during symbiosis, whereas genes outside the island are downregulated. This finding implies that the huge symbiosis island functions as clustered expression islands to support symbiotic nitrogen fixation. Interestingly, most transposase genes on the symbiosis island were highly upregulated in bacteroids, as were nif, fix, fdx, and rpoN. The genome region containing the fixNOPQ genes outside the symbiosis island was markedly upregulated as another expression island under both microaerobic and symbiotic conditions. The symbiosis profiling data suggested that there was activation of amino acid metabolism, as well as nif-fix gene expression. In contrast, genes for cell wall synthesis, cell division, DNA replication, and flagella were strongly repressed in differentiated bacteroids. A highly upregulated gene in bacteroids, mlr5932 (encoding 1-aminocyclopropane-1-carboxylate deaminase), was disrupted and was confirmed to be involved in nodulation enhancement, indicating that disruption of highly expressed genes is a useful strategy for exploring novel gene functions in symbiosis.


Plant Physiology | 1995

Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress

Mika Nomura; M. Ishitani; Tomoko Takabe; Ashwani K. Rai

Synechococcus sp. PCC7942, a fresh water cyanobacterium, was transformed by a shuttle plasmid that contains a 9-kb fragment encoding the Escherichia coli bet gene cluster, i.e. betA (choline dehydrogenase), betB (betaine aldehyde dehydrogenase), betI (a putative regulatory protein), and betT (the choline transport system). The expression of these genes was demonstrated in the cyanobacterial cells (bet-containing cells) by northern blot analysis, as well as by the detection of glycine betaine by 1H nuclear magnetic resonance in cells supplemented with choline. Endogenous choline was not detected in either control or bet-containing cells. Both control and bet-containing cyanobacterial cells were found to import choline in an energy-dependent process, although this import was restricted only to bet-containing cells in conditions of salt stress. Glycine betaine was found to accumulate to a concentration of 45 mM in bet-containing cyanobacterial cells, and this resulted in a stabilization of the photosynthetic activities of photosystems I and II, higher phycobilisome contents, and general protective effects against salt stress when compared to control cells. The growth of bet-containing cells was much faster in the presence of 0.375 M NaCl than that of control cells, indicating that the transformant acquired resistance to salt stress.


Nature | 2009

Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation

Tsuneo Hakoyama; Kaori Niimi; Hirokazu Watanabe; Ryohei Tabata; Junichi Matsubara; Shusei Sato; Yasukazu Nakamura; Satoshi Tabata; Li Jichun; Tsuyoshi Matsumoto; Kazuyuki Tatsumi; Mika Nomura; Shigeyuki Tajima; Masumi Ishizaka; Koji Yano; Haruko Imaizumi-Anraku; Masayoshi Kawaguchi; Hiroshi Kouchi; Norio Suganuma

Homocitrate is a component of the iron–molybdenum cofactor in nitrogenase, where nitrogen fixation occurs. NifV, which encodes homocitrate synthase (HCS), has been identified from various diazotrophs but is not present in most rhizobial species that perform efficient nitrogen fixation only in symbiotic association with legumes. Here we show that the FEN1 gene of a model legume, Lotus japonicus, overcomes the lack of NifV in rhizobia for symbiotic nitrogen fixation. A Fix- (non-fixing) plant mutant, fen1, forms morphologically normal but ineffective nodules. The causal gene, FEN1, was shown to encode HCS by its ability to complement a HCS-defective mutant of Saccharomyces cerevisiae. Homocitrate was present abundantly in wild-type nodules but was absent from ineffective fen1 nodules. Inoculation with Mesorhizobium loti carrying FEN1 or Azotobacter vinelandii NifV rescued the defect in nitrogen-fixing activity of the fen1 nodules. Exogenous supply of homocitrate also recovered the nitrogen-fixing activity of the fen1 nodules through de novo nitrogenase synthesis in the rhizobial bacteroids. These results indicate that homocitrate derived from the host plant cells is essential for the efficient and continuing synthesis of the nitrogenase system in endosymbionts, and thus provide a molecular basis for the complementary and indispensable partnership between legumes and rhizobia in symbiotic nitrogen fixation.


Plant Molecular Biology | 2000

The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression

Mika Nomura; Kenichi Katayama; Asuka Nishimura; Yuji Ishida; Shozo Ohta; Toshihiko Komari; Mitsue Miyao-Tokutomi; Shigeyuki Tajima; Makoto Matsuoka

The small subunit of ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS, is essential for photosynthesis in both C3 and C4 plants, even though the cell specificity of rbcS expression is different between C3 and C4 plants. The C3 rbcS is specifically expressed in mesophyll cells, while the C4 rbcS is expressed in bundle sheath cells, and not mesophyll cells. Two chimeric genes were constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by the two promoters from maize (C4) and rice (C3) rbcS genes. These constructs were introduced into a C4 plant, maize. Both chimeric genes were specifically expressed in photosynthetic organs, such as leaf blade, but not in non-photosynthetic organs. The expressions of the genes were also regulated by light. However, the rice promoter drove the GUS activity mainly in mesophyll cells and relatively low in bundle sheath cells, while the maize rbcS promoter induced the activity specifically in bundle sheath cells. These results suggest that the rice promoter contains some cis-acting elements responding in an organ-pecific and light-inducible regulation manner in maize but does not contain element(s) for bundle sheath cell-specific expression, while the maize promoter does contain such element(s). Based on this result, we discuss the similarities and differences between the rice (C3) and maize (C4) rbcS promoter in terms of the evolution of the C4 photosynthetic gene.


Journal of Plant Research | 1998

Evolution of C4 Photosynthetic Genes and Overexpression of Maize C4 Genes in Rice

Makoto Matsuoka; Mika Nomura; Sakae Agarie; Mitsue Miyao-Tokutomi; Maurice S. B. Ku

C3 plants including many agronomically important crops exhibit a lower photosynthetic efficiency due to inhibition of photosynthesis by O2 and the associated photorespiration. C4 plants had evolved the C4 pathway to overcome low CO2 and photorespiration. This review first focuses on the generation of a system for high level expression of the C4-specific gene for pyruvate, orthophosphate dikinase (Pdk), one of the key enzyme in C4 photosynthesis. Based on the results with transgenic rice plants, we have demonstrated that the regulatory system controlling thePdk expression in maize is not unique to C4 plants but rice (C3 plant) posses a similar system. Second, we discussed the possibility of the high level expression of maize C4-specific genes in transgenic rice plants. Introduction of the maize intact phosphoenolpyruvate carboxylase gene (Ppc) caused 30–100 fold higher PEPC activities than non-transgenic rice. These results demonstrated that intact C4-type genes are available for high level expression of C4 enzymes in rice plants.


Studies in Plant Science | 2000

How to express some C4 photosynthesis genes at high levels in rice.

Makoto Matsuoka; H. Fukayama; H. Tsuchida; Mika Nomura; Sakae Agarie; Maurice S. B. Ku; M. Miyao

To investigate the difference between Pdk genes that encode pyruvate, orthophosphate dikinase (PPDK), a Pdk gene homologous to the maize C4-type Pdk gene was isolated from a C3 plant, rice, and compared with the maize gene. The primary structures of the genes are essentially the same, except that the rice gene has two additional introns. A transient expression assay of Pdk promoters using maize mesophyll protoplasts showed that the mode of expression of the maize and rice genes differs only in the expression activity of the promoter for the chloroplast-type PPDK: the maize gene was expressed fourfold higher than the rice gene. It was also found that a chimeric gene containing the maize Pdk promoter and a reporter gene led to high expression of the reporter gene in transgenic rice. Based on the above observations, the intact genes from maize encoding enzymes for C4 photosynthesis were introduced into rice to increase the activity of the C4 enzymes. As expected, the introduction of the maize gene led to high expression of C4 enzymes in transgenic rice. The activities of phospoenolpyruvate carboxylase (PEPC) and PPDK increased up to 110- and 40-fold more, respectively, than those of nontransgenic rice. High expression of C4 enzymes did not result solely from the high expression activity of the maize gene, since the introduction of a maize PPDK cDNA fused to the maize Pdk promoter or rice Cab promoter did not lead to high expression of PPDK. In some transgenic rice plants carrying the intact maize gene, the level of PPDK protein amounted to 35% of total leaf-soluble protein. The high expression of each C4 enzyme altered metabolism slightly but did not seem to increase the photosynthetic efficiency of transgenic rice leaves.


Marine Biotechnology | 2000

Molecular Analysis of Ribosomal RNA Gene of Red Tide Algae Obtained from the Seto Inland Sea

Takashi Hirashita; Kazuhiko Ichimi; Shigeru Montani; Mika Nomura; Shigeyuki Tajima

Eleven clones from five species of the planktonic microalgae, (Chattonella antiqua, Chattonella marina, Heterosigma akashiwo, Alexandrium catenella, and Scrippsiella trochoidea), which were collected from the Seto Inland Sea in Japan and from Thailand, were subjected to nucleotide sequence analysis of the D1/D2 domain of the large subunit (LSU) of their ribosomal RNA genes. After amplification by polymerase chain reaction using degenerated primers, whole-nucleotide sequences for the D1/D2 domains of the LSU rRNA gene of 11 microalgae were analyzed. Phylogenic tree analysis using these nucleotide sequences showed each species located in a cluster corresponding to its morphological classification. The nucleotide sequence data for Chattonella spp. suggest that multiple clones of both Chattonella antiqua and Chattonella marina are present in the Seto Inland Sea and that red tide blooms of Chattonella spp. in different years may have contained different clones.


Soil Science and Plant Nutrition | 2010

Differential protein profiles of Bradyrhizobium japonicum USDA110 bacteroid during soybean nodule development.

Mika Nomura; Hatthaya Arunothayanan; Tan Van Dao; Hoa Thi-Phuong Le; Takakazu Kaneko; Shusei Sato; Satoshi Tabata; Shigeyuki Tajima

Abstract During nodule development of legumes, together with the morphological alteration of plant cells, the rhizobia undergo marked biochemical and physiological changes and differentiate to bacteroids. Bacteroids invading a nodule are no longer free-growing cells, instead depending on the plant cell for all resources. To elucidate the molecular mechanism of the bacteroid differentiation of Bradyrhizobium japonicum, a time-course analysis of bacteroid protein profiles was studied by 2-D gel electrophoresis in soybean nodules. Using proteomic analysis, protein expressions in soybean nodule bacteroids 7, 10, 14, 28, and 49 days after inoculation (DAI) were monitored. The time points coincide with the early stage of nodule formation (7–10 DAI), the onset of nitrogen fixation (14–28 DAI), and nodule senescence (49 DAI). In this study, 275 annotated protein spots were successfully identified, and a cluster analysis of their expression was performed. A large portion of putative, upregulated proteins were observed in bacteroids at 7 or 10 DAI, and these upregulated proteins were mainly related to transcription, translation, protein folding, and degradation. In the later period (14–28 DAI) of bacteroid differentiation, a number of Nif and Fix proteins were upregulated. In addition, proteins related to the chaperonin and a synthetic enzyme of the poly-beta-hydroxybutyrate were expressed at high abundance. A number of proteins related to solute transporter were upregulated in the bacteroids and dominantly detected throughout nodule development. Changes of relative abundance of these proteins are discussed in relation to symbiosis.

Collaboration


Dive into the Mika Nomura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kouchi

International Christian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurice S. B. Ku

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge