Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mika Toivola is active.

Publication


Featured researches published by Mika Toivola.


BMC Microbiology | 2008

Diversity and seasonal dynamics of bacterial community in indoor environment

Helena Rintala; Miia Pitkäranta; Mika Toivola; Lars Paulin; Aino Nevalainen

BackgroundWe spend most of our lives in indoor environments and are exposed to microbes present in these environments. Hence, knowledge about this exposure is important for understanding how it impacts on human health. However, the bacterial flora in indoor environments has been only fragmentarily explored and mostly using culture methods. The application of molecular methods previously utilised in other environments has resulted in a substantial increase in our awareness of microbial diversity.ResultsThe composition and dynamics of indoor dust bacterial flora were investigated in two buildings over a period of one year. Four samples were taken in each building, corresponding to the four seasons, and 16S rDNA libraries were constructed. A total of 893 clones were analysed and 283 distinct operational taxonomic units (OTUs) detected among them using 97% sequence similarity as the criterion. All libraries were dominated by Gram-positive sequences, with the most abundant phylum being Firmicutes. Four OTUs having high similarity to Corynebacterium-, Propionibacterium-, Streptococcus- and Staphylococcus- sequences were present in all samples. The most abundant of the Gram-negative OTUs were members of the family Sphingomonadaceae, followed by Oxalobacteraceae, Comamonadaceae, Neisseriaceae and Rhizobiaceae.The relative abundance of alpha- and betaproteobacteria increased slightly towards summer at the expense of firmicutes. The proportion of firmicutes and gammaproteobacteria of the total diversity was highest in winter and that of actinobacteria, alpha- and betaproteobacteria in spring or summer, whereas the diversity of bacteroidetes peaked in fall. A statistical comparison of the libraries revealed that the bacterial flora of the two buildings differed during all seasons except spring, but differences between seasons within one building were not that clear, indicating that differences between the buildings were greater than the differences between seasons.ConclusionThis work demonstrated that the bacterial flora of indoor dust is complex and dominated by Gram-positive species. The dominant phylotypes most probably originated from users of the building. Seasonal variation was observed as proportional changes of the phyla and at the species level. The microflora of the two buildings investigated differed statistically and differences between the buildings were more pronounced than differences between seasons.


Journal of Environmental Monitoring | 2002

Personal exposures and microenvironmental concentrations of particles and bioaerosols

Mika Toivola; Sari Alm; Tiina Reponen; Sirpa Kolari; Aino Nevalainen

The aim of this study was to compare the personal exposure to particles and bioaerosols with that measured by stationary samplers in the main microenvironments, i.e., the home and the workplace. A random sample of 81 elementary school teachers was selected from the 823 teachers working for two councils in eastern Finland for the winter time measurement period. Bioaerosol and other particles were collected on filters by button samplers using personal sampling and microenvironmental measurements in homes and workplaces. The 24-hour sampling period was repeated twice for each teacher. Particle mass, absorption coefficient of the filter and the concentration of viable and total microorganisms were analyzed from each filter. In this paper, the study design, quality assurance principles and results of particle and bioaerosol exposure are described. The results show that particle mass concentrations, absorption coefficient and fungi were higher in personal exposure samples than in home and workplace samples. Furthermore, these concentrations were usually lower in the home than in the workplace. Bacterial concentrations were highest in heavily populated workplaces, while the viable fungi concentrations were lowest in workplaces. The fungi and bacteria results showed high variation, which emphasises the importance of quality assurance (duplicates and field blanks) in the microbial field measurements. Our results indicate that personal exposure measurements of bioaerosols in indoor environments are feasible and supplement the information obtained by stationary samplers.


Inhalation Toxicology | 2001

Induction of Cytotoxicity and Production of Inflammatory Mediators in RAW264.7 Macrophages by Spores Grown on Six Different Plasterboards

Timo Murtoniemi; Aino Nevalainen; Merja Suutari; Mika Toivola; Hannu Komulainen; Maija-Riitta Hirvonen

Dampness and microbial growth in buildings are associated with respiratory symptoms in the occupants, but details of the phenomenon are not sufficiently understood. The current study examined the effects of growth conditions provided by six plasterboards on cytotoxicity and inflammatory potential of the spores of Streptomyces californicus, Penicillium spinulosum, Aspergillus versicolor, and Stachybotrys chartarum. The microbes were isolated from mold problem buildings and thereafter grown on six different plasterboards. The spores were harvested, applied to RAW264.7 macrophages (104, 105, 106 spores/106Dampness and microbial growth in buildings are associated with respiratory symptoms in the occupants, but details of the phenomenon are not sufficiently understood. The current study examined the effects of growth conditions provided by six plasterboards on cytotoxicity and inflammatory potential of the spores of Streptomyces californicus, Penicillium spinulosum, Aspergillus versicolor, and Stachybotrys chartarum. The microbes were isolated from mold problem buildings and thereafter grown on six different plasterboards. The spores were harvested, applied to RAW264.7 macrophages (10(4), 10(5), 10(6) spores/10(6) cells), and evaluated 24 h after exposure for the ability to cause cytotoxicity and to stimulate production of nitric oxide (NO), interleukin-1 beta (IL-1beta), tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6). The data indicate clear differences between spores of different microbes in their ability to induce the production of these inflammatory mediators and to cause cell death in macrophages. Also, for each microbe, the induction ability specifically depended on the brand of plasterboard. The spores of Streptomyces californicus collected from all plasterboards were the most potent at inducing NO and cytokine production. Cytotoxicity caused by P. spinulosum and Streptomyces californicus spores was consistent with NO, IL-1beta and IL-6 production induced by those microbes. However, the production of these inflammatory mediators by the spores of Stachybotrys chartarum was not parallel to their ability to cause cell death. The low productions of NO and cytokines were associated with high cytotoxicity caused by the spores of the A. versicolor. These data suggest that growth condition of microbes on different plasterboards affect the ability of microbial spores to induce inflammatory responses and cytotoxicity in macrophages.


Applied and Environmental Microbiology | 2002

Isolation and Identification of Aspergillus fumigatus Mycotoxins on Growth Medium and Some Building Materials

Susanna M. Nieminen; Riikka Kärki; Seppo Auriola; Mika Toivola; Hartmut Laatsch; Reino Laatikainen

ABSTRACT Genotoxic and cytotoxic compounds were isolated and purified from the culture medium of an indoor air mold, Aspergillus fumigatus. One of these compounds was identified as gliotoxin, a known fungal secondary metabolite. Growth of A. fumigatus and gliotoxin production on some building materials were also studied. Strong growth of the mold and the presence of gliotoxin were detected on spruce wood, gypsum board, and chipboard under saturation conditions.


Aiha Journal | 2003

Effect of Building Frame and Moisture Damage on Microbiological Indoor Air Quality in School Buildings

Teija Meklin; Mika Toivola; Tiina Reponen; Virpi Koponen; Tuula Husman; Taina Taskinen; Matti Korppi; Aino Nevalainen

The effect of building frame and moisture damage on microbial indoor air quality was characterized in 17 wooden and 15 concrete or brick school buildings. Technical investigations to detect visible moisture and mold damage were performed according to a standardized protocol. Viable airborne microbes were determined by using a six-stage impactor (Andersen 10-800). Mean concentrations of viable airborne fungi were significantly higher in wooden schools than in concrete schools, showing that the frame material was a determinant of concentrations of airborne fungi. Moisture damage of the building did not alter the fungal concentrations in wooden school buildings. In contrast, in concrete schools the effect of moisture damage was clearly seen as higher concentrations compared with the reference schools. Aspergillus versicolor, Stachybotrys, and Acremonium were detected only in samples from moisture damaged buildings, and can be considered marker fungi of such damage in school buildings. In addition, the presence of Oidiodendron as well as elevated concentrations of Cladosporium and actinobacteria were associated with moisture damage in concrete schools.


Environmental Research | 2008

Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: The effect on biological activity and microbial flora

Kati Huttunen; Helena Rintala; Maija-Riitta Hirvonen; Asko Vepsäläinen; Teija Meklin; Mika Toivola; Aino Nevalainen

Many building-related health problems coincide with moisture damage and mold growth within a building. Their elimination is assumed to improve indoor air quality. The aim of this study was to follow the success of remediation in two individual buildings by analyzing the microbial flora and immunotoxicological activity of filter samples. We compare results from samples collected from indoor air in the moisture-damaged buildings before and after renovation and results from matched reference buildings and outdoor air. The microbial characteristics of the samples were studied by analyzing ergosterol content and determining the composition of fungal flora with quantitative polymerase chain reaction (QPCR). In addition, the concentrations of particles were monitored with optical particle counter (OPC). The immunotoxicological activity of collected particle samples was tested by exposing mouse macrophages (RAW264.7) for 24 h to particle suspension extracted from the filters, and measuring the viability of the exposed cells (MTT-test) and production of inflammatory mediators (nitric oxide, IL-6 and TNF*) in cell culture medium by enzyme-linked immunoassay (ELISA). The results show that for Location 1 the renovation decreased the immunotoxicological activity of the particles collected from damaged building, whereas no difference was detected in the corresponding samples collected from the reference building. Interestingly, only slight differences were seen in the concentration of fungi. In the Location 2, a decrease was seen in the concentration of fungi after the renovation, whereas no effect on the immunotoxicological responses was detected. In this case, the immunotoxicological responses to the indoor air samples were almost identical to those caused by the samples from outdoor air. This indicates that the effects of remediation on the indoor air quality may not necessarily be readily measurable either with microbial or toxicological parameters. This may be associated with different spectrum of harmful agents in different mold and moisture-damaged buildings.


Journal of Environmental Monitoring | 2004

Viable fungi and bacteria in personal exposure samples in relation to microenvironments

Mika Toivola; Sari Alm; Aino Nevalainen

Personal exposures to viable fungi and bacteria were compared with the concentrations being assessed by stationary samplers in home and workplace microenvironments. A random sample of 81 elementary school teachers in eastern Finland performed two 24-hour measurement periods in wintertime. Concentrations and prevalences of viable fungi and bacteria on the collection filters were determined by cultivation method. The geometric mean concentration was 3-12 cfu m(-3) for total viable fungi, 0.6-3.7 cfu m(-3) for Penicillium and mainly under 1 cfu m(-3) for other fungi. The samples with higher fungal concentrations also had higher diversity of fungi than samples with lower concentrations. The total number of fungal genera recovered was 39 for personal, 34 for home and 23 for work samples. The variation in concentration of Penicillium explained even 25-95% of the variations of total fungal concentration in personal exposure, home and workplace environments. There was an association between personal exposure and home concentration of viable fungi and between personal exposure and home and work concentrations of viable bacteria. Personal exposure and home concentrations of fungi were higher in rural areas than in urban areas. Our results also indicate that presence of a certain fungus in a microenvironment does not necessarily mean similar findings in personal exposure samples.


Journal of Exposure Science and Environmental Epidemiology | 2007

Personal and microenvironmental concentrations of particles and microbial aerosol in relation to health symptoms among teachers

Ulla Haverinen-Shaughnessy; Mika Toivola; Sari Alm; Tuula Putus; Aino Nevalainen

A total of 81 randomly selected elementary school teachers participated in two sampling campaigns conducted 2 weeks apart during the winter. A 24-h sample collection was performed using personal and microenvironmental sampling from homes, and an 8-h sample collection was performed from workplaces of the studied subjects. Filters were analyzed for particle mass, absorption coefficient of the filter, and for both total and viable microorganisms. Comprehensive questionnaire responses were collected from the teachers concerning weekly occurred symptoms during the previous 12-month period, and they filled in symptom diaries immediately after each sampling campaign concerning symptoms during the previous 24-h and 7-day periods. The effect of different recall periods on agreement between questionnaire responses was assessed. Factor analysis was used in order to identify factors explaining the pattern of correlations within the personal, home, and work measurements. Moreover, associations between personal, home, and work measurements of pollutants and symptoms were analyzed using general estimation equations. The recall period of 7 days seemed to provide the most reliable data for the health effect assessment. Information from the factor analysis may allow reduction of variables related to the exposure assessment, and better interpretation of results. Both personal exposure and concentrations of pollutants at home were more frequently associated with health symptoms than concentrations at work. In multipollutant analyses, absorbance coefficient was positively associated with eye symptoms, and total bacteria with both cough and blocked nose.


Annals of Occupational Hygiene | 2006

Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles.

Anna Bałazy; Mika Toivola; Tiina Reponen; Albert Podgórski; Anthony T. Zimmer; Sergey A. Grinshpun


American Journal of Infection Control | 2006

Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks?

Anna Bałazy; Mika Toivola; Atin Adhikari; Satheesh K. Sivasubramani; Tiina Reponen; Sergey A. Grinshpun

Collaboration


Dive into the Mika Toivola's collaboration.

Top Co-Authors

Avatar

Aino Nevalainen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Tiina Reponen

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Teija Meklin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Maija-Riitta Hirvonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atin Adhikari

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Hannu Komulainen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Helena Rintala

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Kati Huttunen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Marjut Roponen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge