Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mika Tsujita is active.

Publication


Featured researches published by Mika Tsujita.


Multiple Sclerosis Journal | 2007

Anti-aquaporin 4 antibody in selected Japanese multiple sclerosis patients with long spinal cord lesions:

Keiko Tanaka; Takashi Tani; Masami Tanaka; Takahiko Saida; Jiro Idezuka; Maya Yamazaki; Mika Tsujita; Tsutomu Nakada; Kenji Sakimura; Nishizawa M

Multiple sclerosis (MS) in Asian populations is often characterized by the selective involvement of the optic nerve (ON) and spinal cord (SP) (OSMS) in contrast to classic MS (CMS), where frequent lesions are observed in the cerebrum, cerebellum or brainstem. In Western countries, inflammatory demyelinating disease preferentially involving the ON and SP is called neuromyelitis optica (NMO). Recently, Lennon et al. discovered that NMO-IgG, shown to bind to aquaporin 4 (AQP4), could be a specific marker of NMO and also of Japanese OSMS whose clinical features were identical to NMO having long spinal cord lesions extending over three vertebral segments (LCL). To examine this antibody in larger populations of Japanese OSMS patients in order to know its epidemiological and clinical spectra, we established an immunohistochemical detection system for the anti-AQP4 antibody (AQP4-Ab) using the AQP4-transfected human embryonic kidney cell line (HEK-293) and confirmed AQP4-Ab positivity together with the immunohistochemical staining pattern of NMO-IgG in approximately 60% of Japanese OSMS patients with LCL. Patients with OSMS without LCL and those with CMS were negative for this antibody. Our results accorded with those of Lennon et al. suggest that Japanese OSMS with LCL may have an underlying pathogenesis in common with NMO. Multiple Sclerosis 2007; 13: 850—855. http://msj.sagepub.com


European Journal of Neuroscience | 2006

Abundant distribution of TARP γ-8 in synaptic and extrasynaptic surface of hippocampal neurons and its major role in AMPA receptor expression on spines and dendrites

Masahiro Fukaya; Mika Tsujita; Maya Yamazaki; Etsuko Kushiya; Manabu Abe; Kaori Akashi; Rie Natsume; Masanobu Kano; Haruyuki Kamiya; Masahiko Watanabe; Kenji Sakimura

Transmembrane α‐amino‐3‐hydroxyl‐5‐isoxazolepropionate (AMPA) receptor regulatory proteins (TARPs) play pivotal roles in AMPA receptor trafficking and gating. Here we examined cellular and subcellular distribution of TARP γ‐8 in the mouse brain. Immunoblot and immunofluorescence revealed the highest concentration of γ‐8 in the hippocampus. Immunogold electron microscopy demonstrated dense distribution of γ‐8 on the synaptic and extrasynaptic surface of hippocampal neurons with very low intracellular labeling. Of the neuronal surface, γ‐8 was distributed at the highest level on asymmetrical synapses of pyramidal cells and interneurons, whereas their symmetrical synapses selectively lacked immunogold labeling. Then, the role of γ‐8 in AMPA receptor expression was pursued in the hippocampus using mutant mice defective in the γ‐8 gene. In the mutant cornu ammonis (CA)1 region, synaptic and extrasynaptic AMPA receptors on dendrites and spines were severely reduced to 35–37% of control levels, whereas reduction was mild for extrasynaptic receptors on somata (74%) and no significant decrease was seen for intracellular receptors within spines. In the mutant CA3 region, synaptic AMPA receptors were reduced mildly at asymmetrical synapses in the stratum radiatum (67% of control level), and showed no significant decrease at mossy fiber–CA3 synapses. Therefore, γ‐8 is abundantly distributed on hippocampal excitatory synapses and extrasynaptic membranes, and plays an important role in increasing the number of synaptic and extrasynaptic AMPA receptors on dendrites and spines, particularly, in the CA1 region. Variable degrees of reduction further suggest that other TARPs may also mediate this function at different potencies depending on hippocampal subregions, input sources and neuronal compartments.


Bioorganic & Medicinal Chemistry | 2009

Inhibition of Aquaporin 4 by antiepileptic drugs

Vincent J. Huber; Mika Tsujita; Ingrid L. Kwee; Tsutomu Nakada

The potential of antiepileptic drugs (AEDs) to inhibit the water transport properties of aquaporin 4 (AQP4) was investigated using a combination of in silico and in vitro screening methods. Virtual docking studies on 14 AEDs indicated a range of docking energies that spanned approximately 40 kcal/mol, where the most stabilized energies were consistent with that of the previously identified AQP4 inhibitor acetazolamide. Nine AEDs and one bio-active metabolite were further investigated in a functional assay using AQP4 expressing Xenopus oocytes. Seven of the assayed compounds were found to inhibit AQP4 function, while three did not. A linear correlation was indicated between the in silico docking energies and the in vitro AQP4 inhibitory activity at 20 microM.


Neurology | 2009

Pathologic and immunologic profiles of a limited form of neuromyelitis optica with myelitis

K. Yanagawa; Ichiro Kawachi; Yasuko Toyoshima; Akio Yokoseki; Musashi Arakawa; Ayumi Hasegawa; T. Ito; N. Kojima; Ryoko Koike; Kohichi Tanaka; T. Kosaka; C. F. Tan; Akiyoshi Kakita; Kouichirou Okamoto; Mika Tsujita; Kenji Sakimura; Hideto Takahashi; Nishizawa M

Background: Neuromyelitis optica (NMO) is a demyelinating syndrome characterized by myelitis and optic neuritis. Detection of anti-NMO immunoglobulin G antibody that binds to aquaporin-4 (AQP4) water channels allows the diagnosis of a limited form of NMO in the early stage with myelitis, but not optic neuritis. However, the detailed clinicopathologic features and long-term course of this limited form remain elusive. Methods: We investigated 8 patients with the limited form of NMO with myelitis in comparison with 9 patients with the definite form. Result: All patients with limited and definite form showed uniform relapsing-remitting courses, with no secondary progressive courses. Pathologic findings of biopsy specimens from the limited form were identical to those of autopsy from the definite form, demonstrating extremely active demyelination of plaques, extensive loss of AQP4 immunoreactivity in plaques, and diffuse infiltration by macrophages containing myelin basic proteins with thickened hyalinized blood vessels. Moreover, the definite form at the nadir of relapses displayed significantly higher amounts of the inflammatory cytokines interleukin (IL)-1β and IL-6 in CSF than the limited form and multiple sclerosis. Conclusion: This consistency of pathologic findings and uniformity of courses indicates that aquaporin 4–specific autoantibodies as the initiator of the neuromyelitis optica (NMO) lesion consistently play an important common role in the pathogenicity through the entire course, consisting of both limited and definite forms, and NMO continuously displays homogeneity of pathogenic effector immune mechanisms through terminal stages, whereas multiple sclerosis should be recognized as the heterogeneous 2-stage disease that could switch from inflammatory to degenerative phase. This report is a significant description comparing the pathologic and immunologic data of limited NMO with those of definite NMO.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Postsynaptic P/Q-type Ca2+ channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum

Kouichi Hashimoto; Mika Tsujita; Taisuke Miyazaki; Kazuo Kitamura; Maya Yamazaki; Hee-Sup Shin; Masahiko Watanabe; Kenji Sakimura; Masanobu Kano

Neural circuits are initially redundant but rearranged through activity-dependent synapse elimination during postnatal development. This process is crucial for shaping mature neural circuits and for proper brain function. At birth, Purkinje cells (PCs) in the cerebellum are innervated by multiple climbing fibers (CFs) with similar synaptic strengths. During postnatal development, a single CF is selectively strengthened in each PC through synaptic competition, the strengthened single CF undergoes translocation to a PC dendrite, and massive elimination of redundant CF synapses follows. To investigate the cellular mechanisms of this activity-dependent synaptic refinement, we generated mice with PC-selective deletion of the Cav2.1 P/Q-type Ca2+ channel, the major voltage-dependent Ca2+ channel in PCs. In the PC-selective Cav2.1 knockout mice, Ca2+ transients induced by spontaneous CF inputs are markedly reduced in PCs in vivo. Not a single but multiple CFs were equally strengthened in each PC from postnatal day 5 (P5) to P8, multiple CFs underwent translocation to PC dendrites, and subsequent synapse elimination until around P12 was severely impaired. Thus, P/Q-type Ca2+ channels in postsynaptic PCs mediate synaptic competition among multiple CFs and trigger synapse elimination in developing cerebellum.


Biochemical and Biophysical Research Communications | 2002

Flp recombinase transgenic mice of C57BL/6 strain for conditional gene targeting.

Tomonori Takeuchi; Takanori Nomura; Mika Tsujita; Misao Suzuki; Toshimitsu Fuse; Hisashi Mori; Masayoshi Mishina

We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.


Molecular Aspects of Medicine | 2012

Aquaporins in drug discovery and pharmacotherapy.

Vincent J. Huber; Mika Tsujita; Tsutomu Nakada

Identification of the aquaporin (AQP) protein family more than twenty years ago has ushered in an era where water and neutral solute trafficking is considered a prime target for pharmacological intervention. Using AQP modulation as a basis for the treatment of human disorders has been suggested by phenotype analysis involving specific AQP-null animals, as well as by pathohistological studies. Based on those reports, a wide variety of disorders, such as cerebral edema, cancer and malaria, are considered indications for AQP modulators. Recent studies have also identified several small molecule AQP modulators that can be used to test those hypotheses in disease models. We believe these studies and compounds form the basis from which future treatments and diagnostic protocols of aquaporin-based disorders will be developed.


Phytochemistry | 1997

Formation and emission of monohalomethanes from marine algae

Nobuya Itoh; Mika Tsujita; Takayuki Ando; Tetsuo Higashi

Abstract Methyl bromide (5.9 ng g wet algae −1 hr −1 ) and methyl iodide (6.9 ng g wet algae −1 hr −1 ) were produced by the microalga Pavlova gyrans , and methyl iodide (21.4 ng g wet algae hr −1 for Papenfusiella kuromo and 4 ng g wet algae hr −1 for Sargassum horneri ) and a trace amount of methyl bromide by macroalgae. Methyl halides were synthesized from S- adenosyl- l -methionine (SAM) in cell-free extracts of P. gyrans, P. Kuromo and S. horneri . This mechanism corresponded to the emission of methyl halides from the three algae in vivo . We have studied the optimal pH, and halide ion and methyl donor specificities of the novel enzyme from P. gyrans .


European Journal of Neuroscience | 2010

TARPs γ-2 and γ-7 are essential for AMPA receptor expression in the cerebellum

Maya Yamazaki; Masahiro Fukaya; Kouichi Hashimoto; Miwako Yamasaki; Mika Tsujita; Makoto Itakura; Manabu Abe; Rie Natsume; Masami Takahashi; Masanobu Kano; Kenji Sakimura; Masahiko Watanabe

The α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐type glutamate receptors require auxiliary subunits termed transmembrane AMPA receptor regulatory proteins (TARPs), which promote receptor trafficking to the cell surface and synapses and modulate channel pharmacology and gating. Of six TARPs, γ‐2 and γ‐7 are the two major TARPs expressed in the cerebellum. In the present study, we pursued their roles in synaptic expression of cerebellar AMPA receptors. In the cerebellar cortex, γ‐2 and γ‐7 were preferentially localized at various asymmetrical synapses. Using quantitative Western blot and immunofluorescence, we found severe reductions in GluA2 and GluA3 and mild reduction in GluA4 in γ‐2‐knockout (KO) cerebellum, whereas GluA1 and GluA4 were moderately reduced in γ‐7‐KO cerebellum. GluA2, GluA3 and GluA4 were further reduced in γ‐2/γ‐7 double‐KO (DKO) cerebellum. The large losses of GluA2 and GluA3 in γ‐2‐KO mice and further reductions in DKO mice were confirmed at all asymmetrical synapses examined with postembedding immunogold. Most notably, the GluA2 level in the postsynaptic density fraction, GluA2 labeling density at parallel fiber–Purkinje cell synapses, and AMPA receptor‐mediated currents at climbing fiber–Purkinje cell synapses were all reduced to approximately 10% of the wild‐type levels in DKO mice. On the other hand, the reduction in GluA4 in γ‐7‐KO granular layer reflected its loss at mossy fiber–granule cell synapses, whereas that of GluA1 and GluA4 in γ‐7‐KO molecular layer was caused, at least partly, by their loss in Bergmann glia. Therefore, γ‐2 and γ‐7 cooperatively promote synaptic expression of cerebellar AMPA receptors, and the latter also promotes glial expression.


European Journal of Neuroscience | 2010

TARPs gamma-2 and gamma-7 are essential for AMPA receptor expression in the cerebellum.

Maya Yamazaki; Masahiro Fukaya; Kouichi Hashimoto; Miwako Yamasaki; Mika Tsujita; Makoto Itakura; Manabu Abe; Rie Natsume; Masami Takahashi; Masanobu Kano; Kenji Sakimura; Masahiko Watanabe

The α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐type glutamate receptors require auxiliary subunits termed transmembrane AMPA receptor regulatory proteins (TARPs), which promote receptor trafficking to the cell surface and synapses and modulate channel pharmacology and gating. Of six TARPs, γ‐2 and γ‐7 are the two major TARPs expressed in the cerebellum. In the present study, we pursued their roles in synaptic expression of cerebellar AMPA receptors. In the cerebellar cortex, γ‐2 and γ‐7 were preferentially localized at various asymmetrical synapses. Using quantitative Western blot and immunofluorescence, we found severe reductions in GluA2 and GluA3 and mild reduction in GluA4 in γ‐2‐knockout (KO) cerebellum, whereas GluA1 and GluA4 were moderately reduced in γ‐7‐KO cerebellum. GluA2, GluA3 and GluA4 were further reduced in γ‐2/γ‐7 double‐KO (DKO) cerebellum. The large losses of GluA2 and GluA3 in γ‐2‐KO mice and further reductions in DKO mice were confirmed at all asymmetrical synapses examined with postembedding immunogold. Most notably, the GluA2 level in the postsynaptic density fraction, GluA2 labeling density at parallel fiber–Purkinje cell synapses, and AMPA receptor‐mediated currents at climbing fiber–Purkinje cell synapses were all reduced to approximately 10% of the wild‐type levels in DKO mice. On the other hand, the reduction in GluA4 in γ‐7‐KO granular layer reflected its loss at mossy fiber–granule cell synapses, whereas that of GluA1 and GluA4 in γ‐7‐KO molecular layer was caused, at least partly, by their loss in Bergmann glia. Therefore, γ‐2 and γ‐7 cooperatively promote synaptic expression of cerebellar AMPA receptors, and the latter also promotes glial expression.

Collaboration


Dive into the Mika Tsujita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsutomu Nakada

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge