Mikael Åkerlund
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikael Åkerlund.
PLOS ONE | 2010
Kinga I. Gawlik; Mikael Åkerlund; Virginie Carmignac; Harri Elamaa; Madeleine Durbeej
Background Laminin α2 chain mutations cause congenital muscular dystrophy with dysmyelination neuropathy (MDC1A). Previously, we demonstrated that laminin α1 chain ameliorates the disease in mice. Dystroglycan and integrins are major laminin receptors. Unlike laminin α2 chain, α1 chain binds the receptors by separate domains; laminin globular (LG) domains 4 and LG1-3, respectively. Thus, the laminin α1 chain is an excellent tool to distinguish between the roles of dystroglycan and integrins in the neuromuscular system. Methodology/Principal Findings Here, we provide insights into the functions of laminin α1LG domains and the division of their roles in MDC1A pathogenesis and rescue. Overexpression of laminin α1 chain that lacks the dystroglycan binding LG4-5 domains in α2 chain deficient mice resulted in prolonged lifespan and improved health. Importantly, diaphragm and heart muscles were corrected, whereas limb muscles were dystrophic, indicating that different muscles have different requirements for LG4-5 domains. Furthermore, the regenerative capacity of the skeletal muscle did not depend on laminin α1LG4-5. However, this domain was crucial for preventing apoptosis in limb muscles, essential for myelination in peripheral nerve and important for basement membrane assembly. Conclusions/Significance These results show that laminin α1LG domains and consequently their receptors have disparate functions in the neuromuscular system. Understanding these interactions could contribute to design and optimization of future medical treatment for MDC1A patients.
Human Molecular Genetics | 2008
Shankar R. Venugopalan; Melanie Amen; Jianbo Wang; Leeyean Wong; Adriana Cavender; Rena N. D'Souza; Mikael Åkerlund; Steve L. Brody; Tord Hjalt; Brad A. Amendt
Axenfeld-Rieger syndrome (ARS) patients with PITX2 point mutations exhibit a wide range of clinical features including mild craniofacial dysmorphism and dental anomalies. Identifying new PITX2 targets and transcriptional mechanisms are important to understand the molecular basis of these anomalies. Chromatin immunoprecipitation assays demonstrate PITX2 binding to the FoxJ1 promoter and PITX2C transgenic mouse fibroblasts and PITX2-transfected cells have increased endogenous FoxJ1 expression. FoxJ1 is expressed at embryonic day 14.5 (E14.5) in early tooth germs, then down-regulated from E15.5-E17.5 and re-expressed in the inner enamel epithelium, oral epithelium, tongue epithelium, sub-mandibular salivary gland and hair follicles during E18.5 and neonate day 1. FoxJ1 and Pitx2 exhibit overlapping expression patterns in the dental and oral epithelium. PITX2 activates the FoxJ1 promoter and, Lef-1 and beta-catenin interact with PITX2 to synergistically regulate the FoxJ1 promoter. FoxJ1 physically interacts with the PITX2 homeodomain to synergistically regulate FoxJ1, providing a positive feedback mechanism for FoxJ1 expression. Furthermore, FoxJ1, PITX2, Lef-1 and beta-catenin act in concert to activate the FoxJ1 promoter. The PITX2 T68P ARS mutant protein physically interacts with FoxJ1; however, it cannot activate the FoxJ1 promoter. These data indicate a mechanism for the activity of the ARS mutant proteins in specific cell types and provides a basis for craniofacial/ tooth anomalies observed in these patients. These data reveal novel transcriptional mechanisms of FoxJ1 and demonstrate a new role of FoxJ1 in oro-facial morphogenesis.
Journal of Biological Chemistry | 2008
Mattias Häger; Maria Giulia Bigotti; Renata Meszaros; Virginie Carmignac; Johan Holmberg; Valérie Allamand; Mikael Åkerlund; Sebastian Kalamajski; Andrea Brancaccio; Ulrike Mayer; Madeleine Durbeej
Mutations in the gene encoding laminin α2 chain cause congenital muscular dystrophy type 1A. In skeletal muscle, laminin α2 chain binds at least two receptor complexes: the dystrophin-glycoprotein complex and integrin α7β1. To gain insight into the molecular mechanisms underlying this disorder, we performed gene expression profiling of laminin α2 chain-deficient mouse limb muscle. One of the down-regulated genes encodes a protein called Cib2 (calcium- and integrin-binding protein 2) whose expression and function is unknown. However, the closely related Cib1 has been reported to bind integrin αIIb and may be involved in outside-in-signaling in platelets. Since Cib2 might be a novel integrin α7β1-binding protein in muscle, we have studied Cib2 expression in the developing and adult mouse. Cib2 mRNA is mainly expressed in the developing central nervous system and in developing and adult skeletal muscle. In skeletal muscle, Cib2 colocalizes with the integrin α7B subunit at the sarcolemma and at the neuromuscular and myotendinous junctions. Finally, we demonstrate that Cib2 is a calcium-binding protein that interacts with integrin α7Bβ1D. Thus, our data suggest a role for Cib2 as a cytoplasmic effector of integrin α7Bβ1D signaling in skeletal muscle.
Diabetes | 2015
Tove Fall; Sara Hägg; Alexander Ploner; Reedik Mägi; Krista Fischer; Harmen H. M. Draisma; Antti-Pekka Sarin; Beben Benyamin; Claes Ladenvall; Mikael Åkerlund; Mart Kals; Tonu Esko; Christopher P. Nelson; Marika Kaakinen; Ville Huikari; Massimo Mangino; Aline Meirhaeghe; Kati Kristiansson; Marja-Liisa Nuotio; Michael Kobl; Harald Grallert; Abbas Dehghan; Maris Kuningas; Paul S. de Vries; Renée F.A.G. de Bruijn; Sara M. Willems; Kauko Heikkilä; Karri Silventoinen; Kirsi H. Pietiläinen; Vanessa Legry
Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10−107) and stratified analyses (all P < 3.3 × 10−30). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
Cell and Tissue Research | 2009
Mikael Åkerlund; Virginie Carmignac; Susanne Schéele; Madeleine Durbeej
The heterotrimeric basement membrane protein laminin-111 is essential for early mouse embryogenesis. Its β1 and γ1 chains are crucial for endoderm differentiation and for the formation of basement membranes, whereas α1 chain null mice only lack the extraembryonic Reichert’s membrane. Nevertheless, mice deficient in the cell-binding α1 globular domains 4-5 (LG4-5) have a more severe phenotype than animals devoid of the whole α1 chain, as these domains are required for the formation of a polarized ectoderm. However, the influence of the α1LG4-5 domains on endoderm differentiation is unclear. We have used microarray analysis to compare the expression profiles of normal and α1LG4-5-deficient embryoid bodies and show that genes encoding secreted plasma proteins and proteins involved in endocytosis are reduced in α1LG4-5-deficient embryoid bodies, indicating incomplete differentiation of the visceral endoderm. Moreover, mice lacking α1LG4-5 display endoderm disorganization and a defective expression of the endoderm marker Dab2. We hypothesize that α1LG4-5 domains provide an autocrine signal necessary for the complete differentiation of a functional visceral endoderm and vital signals for the polarization of the epiblast.
Diabetes Care | 2018
Diana L. Cousminer; Emma Ahlqvist; Rajashree Mishra; Mette K. Andersen; Alessandra Chesi; Mohammad I. Hawa; Asa Davis; Kenyaita M. Hodge; Jonathan P. Bradfield; Kaixin Zhou; Vanessa C. Guy; Mikael Åkerlund; Mette Wod; Lars G. Fritsche; Henrik Vestergaard; James Snyder; Kurt Højlund; Allan Linneberg; Annemari Käräjämäki; Ivan Brandslund; Cecilia E. Kim; Daniel R. Witte; Elin Pettersen Sørgjerd; David J. Brillon; Oluf Pedersen; Henning Beck-Nielsen; Niels Grarup; Richard E. Pratley; Michael R. Rickels; Adrian Vella
OBJECTIVE Latent autoimmune diabetes in adults (LADA) shares clinical features with both type 1 and type 2 diabetes; however, there is ongoing debate regarding the precise definition of LADA. Understanding its genetic basis is one potential strategy to gain insight into appropriate classification of this diabetes subtype. RESEARCH DESIGN AND METHODS We performed the first genome-wide association study of LADA in case subjects of European ancestry versus population control subjects (n = 2,634 vs. 5,947) and compared against both case subjects with type 1 diabetes (n = 2,454 vs. 968) and type 2 diabetes (n = 2,779 vs. 10,396). RESULTS The leading genetic signals were principally shared with type 1 diabetes, although we observed positive genetic correlations genome-wide with both type 1 and type 2 diabetes. Additionally, we observed a novel independent signal at the known type 1 diabetes locus harboring PFKFB3, encoding a regulator of glycolysis and insulin signaling in type 2 diabetes and inflammation and autophagy in autoimmune disease, as well as an attenuation of key type 1–associated HLA haplotype frequencies in LADA, suggesting that these are factors that distinguish childhood-onset type 1 diabetes from adult autoimmune diabetes. CONCLUSIONS Our results support the need for further investigations of the genetic factors that distinguish forms of autoimmune diabetes as well as more precise classification strategies.
Journal of Biological Chemistry | 2004
Robert Månsson; Panagiotis Tsapogas; Mikael Åkerlund; Anna Lagergren; Ramiro Gisler; Mikael Sigvardsson
Diabetologia | 2015
Akram Alyass; Peter Almgren; Mikael Åkerlund; Jonathan Dushoff; Bo Isomaa; Peter Nilsson; Tiinamaija Tuomi; Valeriya Lyssenko; Leif Groop; David Meyre
Matrix Biology | 2007
Renata Meszaros; Mikael Åkerlund; Tord Hjalt; Madeleine Durbeej; Peter Ekblom
Archive | 2015
Madeleine Durbeej; Valérie Allamand; Mikael Åkerlund; Sebastian Kalamajski; Andrea Brancaccio; Ulrike Mayer; Mattias Häger; Maria Giulia Bigotti; Renata Meszaros; Virginie Carmignac; Johan Holmberg; Katherine E. Wardrop; Janice A. Dominov