Mikaël Attal
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikaël Attal.
Geology | 2008
Patience A. Cowie; Alexander C. Whittaker; Mikaël Attal; Gerald P. Roberts; G. E. Tucker; Athanassios Ganas
We present new field data from rivers draining across active normal faults that incise across the same lithology at the fault, have been subjected to similar climatic regimes and tectonic settings, and were perturbed by a well-documented increase in fault slip rate ca. 1 Ma. In spite of these similarities, the rivers exhibit markedly different long profiles and patterns of catchment incision. We use channel slope and hydraulic geometry data for each river to calculate bed shear stresses (τb), and show that there is no simple relationship between peak τb and the relative uplift rates across the faults, U , which differ by a factor of four. The long-term average sediment supply to each channel ( Q s), estimated from time-averaged catchment erosion rates, can explain the τb versus U data if bedload modulates bedrock incision rate, E , in a strongly nonlinear way. Together these field data allow us, for the first time, to evaluate theoretical predictions of the role of sediment on river profile evolution and to quantify the magnitude of the effect in natural systems.
Journal of Geophysical Research | 2011
Mikaël Attal; Patience A. Cowie; Alexander C. Whittaker; Daniel E. J. Hobley; Gregory E. Tucker; Gerald P. Roberts
The transient response of bedrock rivers to a drop in base level can be used to discriminate between competing fluvial erosion models. However, some recent studies of bedrock erosion conclude that transient river long profiles can be approximately characterized by a transport‐limited erosion model, while other authors suggest that a detachment‐limited model best explains their field data. The difference is thought to be due to the relative volume of sediment being fluxed through the fluvial system. Using a pragmatic approach, we address this debate by testing the ability of end‐member fluvial erosion models to reproduce the well‐documented evolution of three catchments in the central Apennines (Italy) which have been perturbed to various extents by an independently constrained increase in relative uplift rate. The transport‐limited model is unable to account for the catchments’response to the increase in uplift rate, consistent with the observed low rates of sediment supply to the channels. Instead, a detachment‐limited model with a threshold corresponding to the field‐derived median grain size of the sediment plus a slope‐dependent channel width satisfactorily reproduces the overall convex long profiles along the studied rivers. Importantly, we find that the prefactor in the hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster the higher the uplift rate, consistent with field observations. We conclude that a slope‐ dependent channel width and an entrainment/erosion threshold are necessary ingredients when modeling landscape evolution or mapping the distribution of fluvial erosion rates in areas where the rate of sediment supply to channels is low.
Journal of Geophysical Research | 2012
Martin D. Hurst; Simon M. Mudd; Rachel Walcott; Mikaël Attal; Kyungsoo Yoo
[1] Erosion rates dictate the morphology of landscapes, and therefore quantifying them is a critical part of many geomorphic studies. Methods to directly measure erosion rates are expensive and time consuming, whereas topographic analysis facilitates prediction of erosion rates rapidly and over large spatial extents. If hillslope sediment flux is nonlinearly dependent on slope then the curvature of hilltops will be linearly proportional to erosion rates. In this contribution we develop new techniques to extract hilltop networks and sample their adjacent hillslopes in order to test the utility of hilltop curvature for estimating erosion rates using high-resolution (1 m) digital elevation data. Published and new cosmogenic radionuclide analyses in the Feather River basin, California, suggest that erosion rates vary by over an order of magnitude (10 to 250 mm kyr � 1 ). Hilltop curvature increases with erosion rates, allowing calibration of the hillslope sediment transport coefficient, which controls the relationship between gradient and sediment flux. Having constraints on sediment transport efficiency allows estimation of erosion rates throughout the landscape by mapping the spatial distribution of hilltop curvature. Additionally, we show that hilltop curvature continues to increase with rising erosion rates after gradient-limited hillslopes have emerged. Hence hilltop curvature can potentially reflect higher erosion rates than can be predicted by hillslope gradient, providing soil production on hilltops can keep pace with erosion. Finally, hilltop curvature can be used to estimate erosion rates in landscapes undergoing a transient adjustment to changing boundary conditions if the response timescale of hillslopes is short relative to channels.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Edwin R. C. Baynes; Mikaël Attal; Samuel Niedermann; Linda A. Kirstein; Andrew J. Dugmore; Mark Naylor
Significance The importance of high-magnitude, short-lived events in controlling the evolution of landscapes is not well understood. This matters because during such events, erosion processes can surpass thresholds and cause abrupt landscape changes that have a long-lasting legacy for landscape morphology. We show that extreme flood events, during which the flow depth exceeds the threshold for erosion through plucking rather than abrasion, are the dominant control on the evolution of a large bedrock canyon in Iceland. The erosive signature of these events is maintained within a dynamic landscape over millennial timescales, emphasizing the importance of episodic extreme events in shaping landscapes. Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (100 to 103 h). However, their impacts are rarely considered in studies of long-term landscape evolution (>103 y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic 3He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m3/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene.
Science | 2013
Martin D. Hurst; Simon M. Mudd; Mikaël Attal; George E. Hilley
Gotta Get Up to Get Down By examining high-resolution satellite topography data of a ridge along the San Andreas Fault in California, Hurst et al. (p. 868) demonstrate how hill slope curvature may be used to infer long-term rates of tectonic uplift and erosion. Numerical modeling shows a lag phase between uplift events and changes in morphology, which, combined with the observational data, shows that topography can reveal whether landscapes are active or decaying. These fundamental relationships may help to improve seismic hazard forecasts or to interpret topographic data collected on other terrestrial planets. Changes in tectonic rates can be quantitatively derived from hillslope morphology. Earths surface archives the combined history of tectonics and erosion, which tend to roughen landscapes, and sediment transport and deposition, which smooth them. We analyzed hillslope morphology in the tectonically active Dragon’s Back Pressure Ridge in California, United States, to assess whether tectonic uplift history can be reconstructed using measurable attributes of hillslope features within landscapes. Hilltop curvature and hillslope relief mirror measured rates of vertical displacement caused by tectonic forcing, and their relationships are consistent with those expected when idealizing hillslope transport as a nonlinear diffusion process. Hilltop curvature lags behind relief in its response to changing erosion rates, allowing growing landscapes to be distinguished from decaying landscapes. Numerical modeling demonstrates that hillslope morphology may be used to infer changes in tectonic rates.
Journal of Geophysical Research | 2015
K. Whitbread; John D. Jansen; Paul Bishop; Mikaël Attal
The geometry of channels controls the erosion rate of rivers and the evolution of topography following environmental change. We examine how sediment, slope, and substrate interact to constrain the development of channels following deglaciation and test whether theoretical relationships derived from streams reacting to tectonic uplift apply in these settings. Using an extensive data set of channel geometry measurements from postglacial streams in the Scottish Highlands, we find that a power law width-drainage area scaling model accounts for 81% of the spatial variation in channel width. Substrate influences channel form at the reach scale, with bedrock channels found to be narrower and deeper than alluvial channels. Bedrock channel width does not covary with slope, which may be due to downstream variations in sediment flux. Bedrock channel width-to-depth ratios increase with discharge (or area) and sediment flux, consistent with increasing bed cover promoting lateral widening. We find steep, wide, and shallow bedrock channels immediately below lakes, which we interpret as the result of limited erosion due to a lack of sediment “tools.” Where sediment supply is sufficient to exceed transport capacity, alluvial channels develop wider, shallower geometries constrained primarily by flow hydraulics. Our results indicate that simple scaling models of channel width with drainage area are applicable at regional scale, but locally, channel width varies with substrate, and in the case of bedrock channels, with sediment flux.
Nature | 2017
Elizabeth H. Dingle; Mikaël Attal; Hugh D. Sinclair
Rivers sourced in the Himalayan mountain range carry some of the largest sediment loads on the planet, yet coarse gravel in these rivers vanishes within approximately 10-40 kilometres on entering the Ganga Plain (the part of the North Indian River Plain containing the Ganges River). Understanding the fate of gravel is important for forecasting the response of rivers to large influxes of sediment triggered by earthquakes or storms. Rapid increase in gravel flux and subsequent channel bed aggradation (that is, sediment deposition by a river) following the 1999 Chi-Chi and 2008 Wenchuan earthquakes reduced channel capacity and increased flood inundation. Here we present an analysis of fan geometry, sediment grain size and lithology in the Ganga Basin. We find that the gravel fluxes from rivers draining the central Himalayan mountains, with upstream catchment areas ranging from about 350 to 50,000 square kilometres, are comparable. Our results show that abrasion of gravel during fluvial transport can explain this observation; most of the gravel sourced more than 100 kilometres upstream is converted into sand by the time it reaches the Ganga Plain. These findings indicate that earthquake-induced sediment pulses sourced from the Greater Himalayas, such as that following the 2015 Gorkha earthquake, are unlikely to drive increased gravel aggradation at the mountain front. Instead, we suggest that the sediment influx should result in an elevated sand flux, leading to distinct patterns of aggradation and flood risk in the densely populated, low-relief Ganga Plain.
American Journal of Science | 2016
Elizabeth H. Dingle; Hugh D. Sinclair; Mikaël Attal; David T. Milodowski; Vimal Singh
The Ganga Plain represents a large proportion of the current foreland basin to the Himalaya. The Himalayan-sourced waters irrigate the Plain via major river networks that support approximately 10 percent of the global population. However, some of these rivers are also the source of devastating floods. The tendency for some of these rivers to flood is directly linked to their large scale morphology. In general, the rivers that drain the east Ganga Plain have channels that are perched at a higher elevation relative to their floodplain, leading to more frequent channel avulsion and flooding. In contrast, those further west have channels that are incised into the floodplain and are historically less prone to flooding. Understanding the controls on these contrasting river forms is fundamental to determining the sensitivity of these systems to projected climate change and the growing water resource demands across the Plain. Here, we present a new basin scale approach to quantifying floodplain and channel topography that identifies areas where channels are super-elevated or entrenched relative to their adjacent floodplain. We explore the probable controls on these observations through an analysis of basin subsidence rates, sediment grain size data and sediment supply from the main river systems that traverse the Plain (Yamuna, Ganga, Karnali, Gandak and Kosi rivers). Subsidence rates are approximated by combining basement profiles derived from seismic data with known convergence velocities; results suggest a more slowly subsiding basin in the west than the east. Grain size fining rates are also used as a proxy for relative subsidence rates along the strike of the basin; the results also indicate higher fining rates (and hence subsidence rates for given sediment supply) in the east. By integrating these observations, we propose that higher subsidence rates are responsible for a deeper basin in the east with perched, low gradient river systems that are relatively insensitive to climatically driven changes in base-level. In contrast, the lower subsidence rates in the west are associated with a higher elevation basin topography, and entrenched river systems recording climatically induced lowering of river base-levels during the Holocene.
Journal of Geophysical Research | 2016
Fiona J. Clubb; Simon M. Mudd; Mikaël Attal; David T. Milodowski; Stuart W. D. Grieve
Drainage density is a fundamental landscape metric describing the extent of the fluvial network. We compare the relationship between drainage density (Dd) and erosion rate (E) using the Channel-Hillslope Integrated Landscape Development (CHILD) numerical model. We find that varying the channel slope exponent (n) in detachment-limited fluvial incision models controls the relationship between Dd and E, with n > 1 resulting in increasing Dd with E if all other parameters are held constant. This result is consistent when modeling both linear and non-linear hillslope sediment flux. We also test the relationship between Dd and E in five soil-mantled landscapes throughout the USA: Feather River, CA; San Gabriel Mountains, CA; Boulder Creek, CO; Guadalupe Mountains, NM; and Bitterroot National Forest, ID. For two of these field sites we compare Dd to cosmogenic radionuclide (CRN)-derived erosion rates, and for each site we use mean hilltop curvature as a proxy for erosion rate where CRN-derived erosion rates are not available. We find that there is a significant positive relationship between Dd, E, and hilltop curvature across every site, with the exception of the San Gabriel Mountains, CA. This relationship is consistent with an n exponent greater than 1, suggesting that at higher erosion rates, the transition between advective and diffusive processes occurs at smaller contributing areas in soil-mantled landscapes.
Scientific Reports | 2018
Edwin R. C. Baynes; Dimitri Lague; Mikaël Attal; Aurélien Gangloff; Linda A. Kirstein; Andrew J. Dugmore
The action of rivers within valleys is fundamentally important in controlling landscape morphology, and how it responds to tectonic or climate change. The response of landscapes to external forcing usually results in sequential changes to river long profiles and the upstream migration of waterfalls. Currently, models of this response assume a relationship between waterfall retreat rate and drainage area at the location of the waterfall. Using an experimental study, we show that this assumption has limited application. Due to a self-regulatory response of channel geometry to higher discharge through increasing channel width, the bed shear stress at the lip of the experimental waterfall remains almost constant, so there was no observed change in the upstream retreat rate despite an order of magnitude increase in discharge. Crucially, however, the strength of the bedrock material exhibits a clear control on the magnitude of the mean retreat rate, highlighting the importance of lithology in setting the rate at which landscapes respond to external forcing. As a result existing numerical models of landscape evolution that simulate the retreat of waterfalls as a function of drainage area with a fixed erodibility constant should be re-evaluated to consider spatial heterogeneity in erodibility and channel self-organisation.
Collaboration
Dive into the Mikaël Attal's collaboration.
Cooperative Institute for Research in Environmental Sciences
View shared research outputs