Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikael E. Sellin is active.

Publication


Featured researches published by Mikael E. Sellin.


Cell Host & Microbe | 2014

Epithelium-Intrinsic NAIP/NLRC4 Inflammasome Drives Infected Enterocyte Expulsion to Restrict Salmonella Replication in the Intestinal Mucosa

Mikael E. Sellin; Anna A. Müller; Boas Felmy; Tamas Dolowschiak; Médéric Diard; Aubry Tardivel; Kendle M. Maslowski; Wolf-Dietrich Hardt

The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/β and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogens intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections.


Molecular Biology of the Cell | 2011

Deciphering the rules governing assembly order of mammalian septin complexes

Mikael E. Sellin; Linda Sandblad; Sonja Stenmark; Martin Gullberg

Vertebrates express 9–17 septin family members known to oligomerize into diverse structures, but their native assembly states have remained elusive. The results presented suggest a generic model for how the temporal order of septin assembly directs the subunit arrangement within distinct pools of six- to eight-subunit core heteromers.


PLOS ONE | 2011

The RACK1 Signaling Scaffold Protein Selectively Interacts with Yersinia pseudotuberculosis Virulence Function

Sara E. Thorslund; Tomas Edgren; Jonas Pettersson; Roland Nordfelth; Mikael E. Sellin; Ekaterina A. Ivanova; Matthew S. Francis; Elin L. Isaksson; Hans Wolf-Watz; Maria Fällman

Many Gram-negative bacteria use type III secretion systems to translocate effector proteins into host cells. These effectors interfere with cellular functions in a highly regulated manner resulting in effects that are beneficial for the bacteria. The pathogen Yersinia can resist phagocytosis by eukaryotic cells by translocating Yop effectors into the target cell cytoplasm. This is called antiphagocytosis, and constitutes an important virulence feature of this pathogen since it allows survival in immune cell rich lymphoid organs. We show here that the virulence protein YopK has a role in orchestrating effector translocation necessary for productive antiphagocytosis. We present data showing that YopK influences Yop effector translocation by modulating the ratio of the pore-forming proteins YopB and YopD in the target cell membrane. Further, we show that YopK that can interact with the translocators, is exposed inside target cells and binds to the eukaryotic signaling protein RACK1. This protein is engaged upon Y. pseudotuberculosis-mediated β1-integrin activation and localizes to phagocytic cups. Cells with downregulated RACK1 levels are protected from antiphagocytosis. This resistance is not due to altered levels of translocated antiphagocytic effectors, and cells with reduced levels of RACK1 are still sensitive to the later occurring cytotoxic effect caused by the Yop effectors. Further, a yopK mutant unable to bind RACK1 shows an avirulent phenotype during mouse infection, suggesting that RACK1 targeting by YopK is a requirement for virulence. Together, our data imply that the local event of Yersinia-mediated antiphagocytosis involves a step where YopK, by binding RACK1, ensures an immediate specific spatial delivery of antiphagocytic effectors leading to productive inhibition of phagocytosis.


Infection and Immunity | 2009

The Schistosoma mansoni protein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential To inhibit Toll-like receptor signaling.

Kristoffer Brännström; Mikael E. Sellin; Per Holmfeldt; Maria Brattsand; Martin Gullberg

ABSTRACT The Sm16/SmSLP/SmSPO-1 (Sm16) protein is secreted by the parasite Schistosoma mansoni during skin penetration and has been ascribed immunosuppressive activities. Here we describe the strategy behind the design of a modified Sm16 protein with a decreased aggregation propensity, thus facilitating the expression and purification of an Sm16 protein that is soluble in physiological buffers. The Stokes radii and sedimentation coefficients of recombinant and native proteins indicate that Sm16 is an approximately nine-subunit oligomer. Analysis of truncated Sm16 derivatives showed that both oligomerization and binding to the plasma membrane of human cells depend on multiple C-terminal regions. For analysis of immunomodulatory activities, Sm16 was expressed in Pichia pastoris to facilitate the preparation of a pyrogen/endotoxin-free purified protein. Recombinant Sm16 was found to have no effect on T-lymphocyte activation, cell proliferation, or the basal level of cytokine production by whole human blood or monocytic cells. However, Sm16 exerts potent inhibition of the cytokine response to the Toll-like receptor (TLR) ligands lipopolysaccharide (LPS) and poly(I:C) while being less efficient at inhibiting the response to the TLR ligand peptidoglycan or a synthetic lipopeptide. Since Sm16 specifically inhibits the degradation of the IRAK1 signaling protein in LPS-stimulated monocytes, our findings indicate that inhibition is exerted proximal to the TLR complex.


Trends in Immunology | 2015

Inflammasomes of the intestinal epithelium

Mikael E. Sellin; Kendle M. Maslowski; Kevin J. Maloy; Wolf-Dietrich Hardt

While the functional importance of inflammasomes in blood-derived cell types is well established, it remains poorly understood how inflammasomes in nonhematopoietic cells contribute to mucosal immunity. Recent studies have revealed functional roles of inflammasomes - particularly NAIP/NLRC4, NLRP6, and noncanonical caspase-4 (caspase-11) - within epithelial cells of the gut in mucosal immune defense, inflammation, and tumorigenesis. Here, we review and discuss these findings in the broader context of tissue compartment-specific mucosal immunity. We propose several models whereby activities of the intestinal epithelial inflammasomes converge on mechanisms to remove compromised epithelial cells, maintain host-microbiota mutualism, and communicate with immune cells of the underlying lamina propria.


Cellular and Molecular Life Sciences | 2009

Predominant regulators of tubulin monomer–polymer partitioning and their implication for cell polarization

Per Holmfeldt; Mikael E. Sellin; Martin Gullberg

The microtubule-system organizes the cytoplasm during interphase and segregates condensed chromosomes during mitosis. Four unrelated conserved proteins, XMAP215/Dis1/TOGp, MCAK, MAP4 and Op18/stathmin, have all been implicated as predominant regulators of tubulin monomer–polymer partitioning in animal cells. However, while studies employing the Xenopus egg extract model system indicate that the partitioning is largely governed by the counteractive activities of XMAP215 and MCAK, studies of human cell lines indicate that MAP4 and Op18 are the predominant regulators of the interphase microtubule-array. Here, we review functional interplay of these proteins during interphase and mitosis in various cell model systems. We also review the evidence that MAP4 and Op18 have interphase-specific, counteractive and phosphorylation-inactivated activities that govern tubulin subunit partitioning in many mammalian cell types. Finally, we discuss evidence indicating that partitioning regulation by MAP4 and Op18 may be of significance to establish cell polarity.


Molecular Biology of the Cell | 2011

Microtubules support a disk-like septin arrangement at the plasma membrane of mammalian cells

Mikael E. Sellin; Per Holmfeldt; Sonja Stenmark; Martin Gullberg

Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. The data point to a general model for assembly of higher-order septin arrangements at locations providing the greatest opportunity for binding cooperativity, which depends on both the cell type and external cues.


Molecular Biology of the Cell | 2008

Global regulation of the interphase microtubule system by abundantly expressed Op18/stathmin.

Mikael E. Sellin; Per Holmfeldt; Sonja Stenmark; Martin Gullberg

Op18/stathmin (Op18), a conserved microtubule-depolymerizing and tubulin heterodimer-binding protein, is a major interphase regulator of tubulin monomer-polymer partitioning in diverse cell types in which Op18 is abundant. Here, we addressed the question of whether the microtubule regulatory function of Op18 includes regulation of tubulin heterodimer synthesis. We used two human cell model systems, K562 and Jurkat, combined with strategies for regulatable overexpression or depletion of Op18. Although Op18 depletion caused extensive overpolymerization and increased microtubule content in both cell types, we did not detect any alteration in polymer stability. Interestingly, however, we found that Op18 mediates positive regulation of tubulin heterodimer content in Jurkat cells, which was not observed in K562 cells. By analysis of cells treated with microtubule-poisoning drugs, we found that Jurkat cells regulate tubulin mRNA levels by a posttranscriptional mechanism similarly to normal primary cells, whereas this mechanism is nonfunctional in K562 cells. We present evidence that Op18 mediates posttranscriptional regulation of tubulin mRNA in Jurkat cells through the same basic autoregulatory mechanism as microtubule-poisoning drugs. This, combined with potent regulation of tubulin monomer-polymer partitioning, enables Op18 to exert global regulation of the microtubule system.


Molecular Biology of the Cell | 2012

Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers

Mikael E. Sellin; Sonja Stenmark; Martin Gullberg

Cell type–specific alternative splicing results in six confirmed mammalian SEPT9 isoforms. SEPT9 expression levels dictate the hexamer-to-octamer ratio of septin core heteromers, and isoform compositions and expression levels together determine higher-order arrangements of septin filaments.


PLOS ONE | 2014

A Generic Method for Design of Oligomer-Specific Antibodies

Kristoffer Brännström; Malin Lindhagen-Persson; Anna L. Gharibyan; Irina Iakovleva; Monika Vestling; Mikael E. Sellin; Thomas Brännström; Ludmilla A. Morozova-Roche; Lars Forsgren; Anders Olofsson

Antibodies that preferentially and specifically target pathological oligomeric protein and peptide assemblies, as opposed to their monomeric and amyloid counterparts, provide therapeutic and diagnostic opportunities for protein misfolding diseases. Unfortunately, the molecular properties associated with oligomer-specific antibodies are not well understood, and this limits targeted design and development. We present here a generic method that enables the design and optimisation of oligomer-specific antibodies. The method takes a two-step approach where discrimination between oligomers and fibrils is first accomplished through identification of cryptic epitopes exclusively buried within the structure of the fibrillar form. The second step discriminates between monomers and oligomers based on differences in avidity. We show here that a simple divalent mode of interaction, as within e.g. the IgG isotype, can increase the binding strength of the antibody up to 1500 times compared to its monovalent counterpart. We expose how the ability to bind oligomers is affected by the monovalent affinity and the turnover rate of the binding and, importantly, also how oligomer specificity is only valid within a specific concentration range. We provide an example of the method by creating and characterising a spectrum of different monoclonal antibodies against both the Aβ peptide and α-synuclein that are associated with Alzheimers and Parkinsons diseases, respectively. The approach is however generic, does not require identification of oligomer-specific architectures, and is, in essence, applicable to all polypeptides that form oligomeric and fibrillar assemblies.

Collaboration


Dive into the Mikael E. Sellin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge