Mikael Elias
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikael Elias.
Nature | 2012
Mikael Elias; Alon Wellner; Korina Goldin-Azulay; Eric Chabriere; Julia A. Vorholt; Tobias J. Erb; Dan S. Tawfik
Arsenate and phosphate are abundant on Earth and have striking similarities: nearly identical pKa values, similarly charged oxygen atoms, and thermochemical radii that differ by only 4% (ref. 3). Phosphate is indispensable and arsenate is toxic, but this extensive similarity raises the question whether arsenate may substitute for phosphate in certain niches. However, whether it is used or excluded, discriminating phosphate from arsenate is a paramount challenge. Enzymes that utilize phosphate, for example, have the same binding mode and kinetic parameters as arsenate, and the latter’s presence therefore decouples metabolism. Can proteins discriminate between these two anions, and how would they do so? In particular, cellular phosphate uptake systems face a challenge in arsenate-rich environments. Here we describe a molecular mechanism for this process. We examined the periplasmic phosphate-binding proteins (PBPs) of the ABC-type transport system that mediates phosphate uptake into bacterial cells, including two PBPs from the arsenate-rich Mono Lake Halomonas strain GFAJ-1. All PBPs tested are capable of discriminating phosphate over arsenate at least 500-fold. The exception is one of the PBPs of GFAJ-1 that shows roughly 4,500-fold discrimination and its gene is highly expressed under phosphate-limiting conditions. Sub-ångström-resolution structures of Pseudomonas fluorescens PBP with both arsenate and phosphate show a unique mode of binding that mediates discrimination. An extensive network of dipole–anion interactions, and of repulsive interactions, results in the 4% larger arsenate distorting a unique low-barrier hydrogen bond. These features enable the phosphate transport system to bind phosphate selectively over arsenate (at least 103 excess) even in highly arsenate-rich environments.
Journal of Molecular Biology | 2008
Mikael Elias; Jérôme Dupuy; Luigia Merone; Luigi Mandrich; Elena Porzio; Sebastien Moniot; Daniel Rochu; Claude Lecomte; Mosè Rossi; Patrick Masson; Giuseppe Manco; Eric Chabriere
Organophosphates are the largest class of known insecticides, several of which are potent nerve agents. Consequently, organophosphate-degrading enzymes are of great scientific interest as bioscavengers and biodecontaminants. Recently, a hyperthermophilic phosphotriesterase (known as SsoPox), from the Archaeon Sulfolobus solfataricus, has been isolated and found to possess a very high lactonase activity. Here, we report the three-dimensional structures of SsoPox in the apo form (2.6 A resolution) and in complex with a quorum-sensing lactone mimic at 2.0 A resolution. The structure also reveals an unexpected active site topology, and a unique hydrophobic channel that perfectly accommodates the lactone substrate. Structural and mutagenesis evidence allows us to propose a mechanism for lactone hydrolysis and to refine the catalytic mechanism established for phosphotriesterases. In addition, SsoPox structures permit the correlation of experimental lactonase and phosphotriesterase activities and this strongly suggests lactonase activity as the cognate function of SsoPox. This example demonstrates that promiscuous activities probably constitute a large and efficient reservoir for the creation of novel catalytic activities.
Journal of Molecular Biology | 2012
Moshe Ben-David; Mikael Elias; Jean Jacques Filippi; Elisabet Duñach; Israel Silman; Joel L. Sussman; Dan S. Tawfik
The origins of enzyme specificity are well established. However, the molecular details underlying the ability of a single active site to promiscuously bind different substrates and catalyze different reactions remain largely unknown. To better understand the molecular basis of enzyme promiscuity, we studied the mammalian serum paraoxonase 1 (PON1) whose native substrates are lipophilic lactones. We describe the crystal structures of PON1 at a catalytically relevant pH and of its complex with a lactone analogue. The various PON1 structures and the analysis of active-site mutants guided the generation of docking models of the various substrates and their reaction intermediates. The models suggest that promiscuity is driven by coincidental overlaps between the reactive intermediate for the native lactonase reaction and the ground and/or intermediate states of the promiscuous reactions. This overlap is also enabled by different active-site conformations: the lactonase activity utilizes one active-site conformation whereas the promiscuous phosphotriesterase activity utilizes another. The hydrolysis of phosphotriesters, and of the aromatic lactone dihydrocoumarin, is also driven by an alternative catalytic mode that uses only a subset of the active-site residues utilized for lactone hydrolysis. Indeed, PON1s active site shows a remarkable level of networking and versatility whereby multiple residues share the same task and individual active-site residues perform multiple tasks (e.g., binding the catalytic calcium and activating the hydrolytic water). Overall, the coexistence of multiple conformations and alternative catalytic modes within the same active site underlines PON1s promiscuity and evolutionary potential.
Journal of Molecular Biology | 2013
Eynat Dellus-Gur; Ágnes Tóth-Petróczy; Mikael Elias; Dan S. Tawfik
Protein evolvability includes two elements--robustness (or neutrality, mutations having no effect) and innovability (mutations readily inducing new functions). How are these two conflicting demands bridged? Does the ability to bridge them relate to the observation that certain folds, such as TIM barrels, accommodate numerous functions, whereas other folds support only one? Here, we hypothesize that the key to innovability is polarity--an active site composed of flexible, loosely packed loops alongside a well-separated, highly ordered scaffold. We show that highly stabilized variants of TEM-1 β-lactamase exhibit selective rigidification of the enzymes scaffold while the active-site loops maintained their conformational plasticity. Polarity therefore results in stabilizing, compensatory mutations not trading off, but instead promoting the acquisition of new activities. Indeed, computational analysis indicates that in folds that accommodate only one function throughout evolution, for example, dihydrofolate reductase, ≥ 60% of the active-site residues belong to the scaffold. In contrast, folds associated with multiple functions such as the TIM barrel show high scaffold-active-site polarity (~20% of the active site comprises scaffold residues) and >2-fold higher rates of sequence divergence at active-site positions. Our work suggests structural measures of fold polarity that appear to be correlated with innovability, thereby providing new insights regarding protein evolution, design, and engineering.
Trends in Biochemical Sciences | 2014
Mikael Elias; Grzegorz Wieczorek; Shaked Rosenne; Dan S. Tawfik
Organismal adaptation to extreme temperatures yields enzymes with distinct configurational stabilities, including thermophilic and psychrophilic enzymes, which are adapted to high and low temperatures, respectively. These enzymes are widely assumed to also have unique rate-temperature dependencies. Thermophilic enzymes, for example, are considered optimal at high temperatures and effectively inactive at low temperatures due to excess rigidity. Surveying published data, we find that thermophilic, mesophilic, and psychrophilic enzymes exhibit indistinguishable rate-temperature dependencies. Furthermore, given the nonenzymatic rate-temperature dependency, all enzymes, regardless of their operation temperatures, become >10-fold less powerful catalysts per 25 °C temperature increase. Among other factors, this loss of rate acceleration may be ascribed to thermally induced vibrations compromising the active-site catalytic configuration, suggesting that many enzymes are in fact insufficiently rigid.
Scientific Reports | 2012
Julien Hiblot; Guillaume Gotthard; Eric Chabriere; Mikael Elias
SsoPox is a lactonase endowed with promiscuous phosphotriesterase activity isolated from Sulfolobus solfataricus that belongs to the Phosphotriesterase-Like Lactonase family. Because of its intrinsic thermal stability, SsoPox is seen as an appealing candidate as a bioscavenger for organophosphorus compounds. A comprehensive kinetic characterisation of SsoPox has been performed with various phosphotriesters (insecticides) and phosphodiesters (nerve agent analogues) as substrates. We show that SsoPox is active for a broad range of OPs and remains active under denaturing conditions. In addition, its OP hydrolase activity is highly stimulated by anionic detergent at ambient temperature and exhibits catalytic efficiencies as high as kcat/KM of 105 M−1s−1 against a nerve agent analogue. The structure of SsoPox bound to the phosphotriester fensulfothion reveals an unexpected and non-productive binding mode. This feature suggests that SsoPoxs active site is sub-optimal for phosphotriester binding, which depends not only upon shape but also on localised charge of the ligand.
Journal of Molecular Biology | 2011
Uria Alcolombri; Mikael Elias; Dan S. Tawfik
Large libraries of randomly mutated genes are applied in directed evolution experiments in order to obtain sufficient variability. These libraries, however, contain mostly inactive variants, and the very low frequency of improved variants can only be isolated by high-throughput screening. Small but efficient libraries comprise an attractive alternative. Here, we describe the application of ancestral libraries-libraries based on mutations predicted by phylogenetic analysis and ancestral inference. We designed and constructed such libraries using serum paraoxonases and cytosolic sulfotransferases (SULTs) as model enzymes. Both of these enzyme families exhibit a range of activities in drug metabolism and detoxification of xenobiotics. The ancestral serum paraoxonase and SULT libraries were screened by low-throughput means, including HPLC, using substrates and/or reactions with which all family members exhibit low activity. The libraries showed a remarkably high frequency of highly polymorphic and functionally diverse variants. Screening of as few as 300 variants enabled the isolation of mutants with up to 50-fold higher activity than the starting point enzyme. Structural and kinetic characterizations of an evolved SULT variant show how few ancestral mutations reshaped the active site and modulated the enzymes specificity. Ancestral libraries therefore comprise a means of focusing diversity to positions and mutations that readily trigger changes in substrate and/or reaction specificity, thereby facilitating the isolation of new enzyme variants for a variety of different substrates and reactions by medium-throughput or even low-throughput screens.
Extremophiles | 2009
Pompea Del Vecchio; Mikael Elias; Luigia Merone; Giuseppe Graziano; Jérôme Dupuy; Luigi Mandrich; Paola Carullo; Bertrand Fournier; Daniel Rochu; Mosè Rossi; Patrick Masson; Eric Chabriere; Giuseppe Manco
Organophosphates (OPs) constitute the largest class of insecticides used worldwide and certain of them are potent nerve agents. Consequently, enzymes degrading OPs are of paramount interest, as they could be used as bioscavengers and biodecontaminants. Looking for a stable OPs catalyst, able to support industrial process constraints, a hyperthermophilic phosphotriesterase (PTE) (SsoPox) was isolated from the archaeon Sulfolobus solfataricus and was found to be highly thermostable. The solved 3D structure revealed that SsoPox is a noncovalent dimer, with lactonase activity against “quorum sensing signals”, and therefore could represent also a potential weapon against certain pathogens. The structural basis of the high thermostability of SsoPox has been investigated by performing a careful comparison between its structure and that of two mesophilic PTEs from Pseudomonas diminuta and Agrobacterium radiobacter. In addition, the conformational stability of SsoPox against the denaturing action of temperature and GuHCl has been determined by means of circular dichroism and fluorescence measurements. The data suggest that the two fundamental differences between SsoPox and the mesophilic counterparts are: (a) a larger number of surface salt bridges, also involved in complex networks; (b) a tighter quaternary structure due to an optimization of the interactions at the interface between the two monomers.
PLOS ONE | 2012
Julien Hiblot; Guillaume Gotthard; Eric Chabriere; Mikael Elias
Background A new member of the Phosphotriesterase-Like Lactonases (PLL) family from the hyperthermophilic archeon Sulfolobus islandicus (SisLac) has been characterized. SisLac is a native lactonase that exhibits a high promiscuous phosphotriesterase activity. SisLac thus represents a promising target for engineering studies, exhibiting both detoxification and bacterial quorum quenching abilities, including human pathogens such as Pseudomonas aeruginosa. Methodology/Principal Findings Here, we describe the substrate specificity of SisLac, providing extensive kinetic studies performed with various phosphotriesters, esters, N-acyl-homoserine lactones (AHLs) and other lactones as substrates. Moreover, we solved the X-ray structure of SisLac and structural comparisons with the closely related SsoPox structure highlighted differences in the surface salt bridge network and the dimerization interface. SisLac and SsoPox being close homologues (91% sequence identity), we undertook a mutational study to decipher these structural differences and their putative consequences on the stability and the catalytic properties of these proteins. Conclusions/Significance We show that SisLac is a very proficient lactonase against aroma lactones and AHLs as substrates. Hence, data herein emphasize the potential role of SisLac as quorum quenching agent in Sulfolobus. Moreover, despite the very high sequence homology with SsoPox, we highlight key epistatic substitutions that influence the enzyme stability and activity.
Journal of the American Chemical Society | 2009
Dorothee Liebschner; Mikael Elias; Sèbastien Moniot; Bertrand Fournier; Ken Scott; Christian Jelsch; Benoit Guillot; Claude Lecomte; Eric Chabriere
PfluDING is a bacterial protein isolated from Pseudomonas fluorescens that belongs to the DING protein family, which is ubiquitous in eukaryotes and extends to prokaryotes. DING proteins and PfluDING have very similar topologies to phosphate Solute Binding Proteins (SBPs). The three-dimensional structure of PfluDING was obtained at subangstrom resolution (0.88 and 0.98 A) at two different pHs (4.5 and 8.5), allowing us to discuss the hydrogen bond network that sequesters the phosphate ion in the binding site. From this high resolution data, we experimentally elucidated the molecular basis of phosphate binding in phosphate SBPs. The phosphate ion is tightly bound to the protein via 12 hydrogen bonds between phosphate oxygen atoms and OH and NH groups of the protein. The proton on one oxygen atom of the phosphate dianion forms a 2.5 A low barrier hydrogen bond with an aspartate, with the energy released by forming this strong bond ensuring the specificity for the dianion even at pH 4.5. In particular, contrary to previous theories on phosphate SBPs, accurate electrostatic potential calculations show that the binding cleft is positively charged. PfluDING structures reveal that only dibasic phosphate binds to the protein at both acidic and basic phosphate, suggesting that the protein binding site environment stabilizes the HPO(4)(2-) form of phosphate.