Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikael Gällstedt is active.

Publication


Featured researches published by Mikael Gällstedt.


Cereal Chemistry | 2013

Wheat gluten polymer structures : The impact of genotype environment and processing on their functionality in various applications

Eva Johansson; Ali Hafeez Malik; Abrar Hussain; Faiza Rasheed; William R. Newson; Tomás S. Plivelic; Mikael S. Hedenqvist; Mikael Gällstedt; Ramune Kuktaite

ABSTRACT For a number of applications, gluten protein polymer structures are of the highest importance in determining end-use properties. The present article focuses on gluten protein structures in the wheat grain, genotype- and environment-related changes, protein structures in various applications, and their impact on quality. Protein structures in mature wheat grain or flour are strongly related to end-use properties, although influenced by genetic and environment interactions. Nitrogen availability during wheat development and genetically determined plant development rhythm are the most important parameters determining the gluten protein polymer structure, although temperature during plant development interacts with the impact of the mentioned parameters. Glutenin subunits are the main proteins incorporated in the gluten protein polymer in extracted wheat flour. During dough mixing, gliadins are also incorporated through disulfide-sulfhydryl exchange reactions. Gluten protein polymer size and complexi...


Biomacromolecules | 2009

Properties of extruded vital wheat gluten sheets with sodium hydroxide and salicylic acid

N. Henrik Ullsten; Sung-Woo Cho; Gwen Spencer; Mikael Gällstedt; Eva Johansson; Mikael S. Hedenqvist

This paper presents a novel approach to improve the barrier and mechanical properties of extruded glycerol-plasticized vital wheat gluten sheets. The sheets were extruded with a single screw extruder at alkaline conditions using 3-5 wt % NaOH. Salicylic acid (SA), known to improve the extrudability of wheat gluten, was also added alone or in combination with NaOH. Oxygen transmission rate and volatile mass measurements, tensile tests, protein solubility, glycerol migration, infrared spectroscopy, and electrophoresis were used to assess the properties of the extrudate. Electrophoresis showed that the gluten/glycerol sheet and the sheet with 3 wt % NaOH and 1 wt % SA contained the same building blocks in terms of proteins and protein subunits, although the protein solubility in these samples was different. The oxygen barrier, at dry conditions, was improved significantly with the addition of NaOH. On the other hand, the addition of salicylic acid yielded poorer barrier properties. The extrudate was placed on a blotting paper and its aging properties were investigated during the first 120 days. It was observed that the extrudate with 3 wt % NaOH had the most suitable combination of properties (low oxygen permeability, large strain at break, and relatively small aging-induced changes in mechanical properties); the reason is probably due to low plasticizer migration and an optimal protein aggregation/polymerization.


Biomacromolecules | 2011

Structure and morphology of wheat gluten films: from polymeric protein aggregates toward superstructure arrangements.

Ramune Kuktaite; Tomás S. Plivelic; Yngve Cerenius; Mikael S. Hedenqvist; Mikael Gällstedt; Salla Marttila; Rickard Ignell; Y. Popineau; Oliver Tranquet; Peter R. Shewry; Eva Johansson

Evaluation of structure and morphology of extruded wheat gluten (WG) films showed WG protein assemblies elucidated on a range of length scales from nano (4.4 Å and 9 to 10 Å, up to 70 Å) to micro (10 μm). The presence of NaOH in WG films induced a tetragonal structure with unit cell parameters, a = 51.85 Å and c = 40.65 Å, whereas NH(4)OH resulted in a bidimensional hexagonal close-packed (HCP) structure with a lattice parameter of 70 Å. In the WG films with NH(4)OH, a highly polymerized protein pattern with intimately mixed glutenins and gliadins bounded through SH/SS interchange reactions was found. A large content of β-sheet structures was also found in these films, and the film structure was oriented in the extrusion direction. In conclusion, this study highlights complexities of the supramolecular structures and conformations of wheat gluten polymeric proteins in biofilms not previously reported for biobased materials.


International Journal of Biological Macromolecules | 2011

Injection-molded nanocomposites and materials based on wheat gluten

Sung-Woo Cho; Mikael Gällstedt; Eva Johansson; Mikael S. Hedenqvist

This is, to our knowledge, the first study of the injection molding of materials where wheat gluten (WG) is the main component. In addition to a plasticizer (glycerol), 5 wt.% natural montmorillonite clay was added. X-ray indicated intercalated clay and transmission electron microscopy indicated locally good clay platelet dispersion. Prior to feeding into the injection molder, the material was first compression molded into plates and pelletized. The filling of the circular mold via the central gate was characterized by a divergent flow yielding, in general, a stronger and stiffer material in the circumferential direction. It was observed that 20-30 wt.% glycerol yielded the best combination of processability and mechanical properties. The clay yielded improved processability, plate homogeneity and tensile stiffness. IR spectroscopy and protein solubility indicated that the injection molding process yielded a highly aggregated structure. The overall conclusion was that injection molding is a very promising method for producing WG objects.


RSC Advances | 2014

Structural architecture and solubility of native and modified gliadin and glutenin proteins: non-crystalline molecular and atomic organization

Faiza Rasheed; William R. Newson; Tomás S. Plivelic; Ramune Kuktaite; Mikael S. Hedenqvist; Mikael Gällstedt; Eva Johansson

Wheat gluten (WG) and its components, gliadin and glutenin proteins, form the largest polymers in nature, which complicates the structural architecture of these proteins. Wheat gluten, gliadin and glutenin proteins in unmodified form showed few secondary structural features. Structural modification of these proteins using heat, pressure and the chemical chaperone glycerol resulted in a shift to organized structure. In modified gliadin, nano-structural molecular arrangements in the form of hexagonal closed packed (HCP) assemblies with lattice parameter of (58 A) were obvious together with development of intermolecular disulphide bonds. Modification of glutenin resulted in highly polymerized structure with proteins linked not only by disulphide bonds, but also with other covalent and irreversible bonds, as well as the highest proportion of β-sheets. From a combination of experimental evidence and protein algorithms, we have proposed tertiary structure models of unmodified and modified gliadin and glutenin proteins. An increased understanding of gliadin and glutenin proteins structure and behavior are of utmost importance to understand the applicability of these proteins for various applications including plastic materials, foams, adhesives, films and coatings.


Soft Matter | 2011

Protein network structure and properties of wheat gluten extrudates using a novel solvent-free approach with urea as a combined denaturant and plasticiser

Hasan Türe; Mikael Gällstedt; Ramune Kuktaite; Eva Johansson; Mikael S. Hedenqvist

This is, to our knowledge, the first success on solvent-free extrusion of wheat gluten (WG) into high quality films without using NaOH/salicylic acid. It was possible by using urea (concentrations: 10, 15 and 20 wt%) in the single screw-extruder process. Tensile testing, oxygen permeability, water vapor transmission rate, infrared spectroscopy (IR), confocal laser scanning microscopy (CLSM) and protein solubility were used to assess the properties of the extrudates. As the urea concentration increased, the strength and stiffness decreased while the extensibility increased. The oxygen permeability was low and increased, as did the water vapor transmission rate, with increasing urea concentration. The protein solubility of urea-containing films was found to be significantly lower than that of the native gluten and glycerol-plasticized WG extrudate. CLSM, together with the protein solubility, indicated that the urea films were aggregated/polymerized and IR spectroscopy revealed that these films contained a sizeable amount of β-sheets with a high degree of hydrogen bonds associated with protein aggregation. The aggregation did not change with increasing urea concentration, which suggests that the changes in the mechanical and permeability properties were due to urea-induced plasticisation.


Journal of Polymers and The Environment | 2002

Oxygen and Water Barrier Properties of Coated Whey Protein and Chitosan Films

Mikael Gällstedt; Mikael S. Hedenqvist

Films of whey protein and chitosan acetic acid salt have lower oxygen permeability than, for example, ethylene-co-vinylalcohol under dry conditions, but water and water vapor seriously impair the gas barrier properties. To reduce the oxygen permeability at 90% relative humidity and the water-vapor transmission rate at 100% relative humidity, the films were coated with an alkyd, a beeswax compound, or a nitrocellulose lacquer. Permeability and transmission rate measurements were performed in accordance with standard methods and showed that the beeswax compound and the nitrocellulose were appropriate as water-vapor barriers. Overall migration to water was measured after 10 days exposure time, with the coated surface exposed to the water, showing that the alkyd-coated and the nitrocellulose-coated films were both below the safety limit for food contact. Water absorbency tests, performed by the Cobb method, showed that the films coated with the beeswax compound or with nitrocellulose lacquer exhibit lower absorbency than the alkyd-coated films.


Carbohydrate Polymers | 2015

Improved material properties of solution-cast starch films: Effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes

Carolin Menzel; Mariette Andersson; Roger Andersson; José L. Vázquez-Gutiérrez; Geoffrey Daniel; Maud Langton; Mikael Gällstedt; Kristine Koch

High-amylose potato starches were produced through genetic modification resulting in changed granule morphology and composition, with higher amylose content and increased chain length of amylopectin. The increased amylose content and structural changes in amylopectin enhanced film-forming behavior and improved barrier and tensile properties in starch films. The molecular structure in these starches was related to film-forming properties. Solution-cast films of high-amylose starch revealed a homogeneous structure with increasing surface roughness at higher amylose content, possibly due to amylose aggregation. Films exhibited significantly higher stress and strain at break compared with films of wild-type starch, which could be attributable to the longer chains of amylopectin being involved in the interconnected network and more interaction between chains, as shown using transmission electron microscopy. The oxygen permeability of high-amylose starch films was significantly decreased compared with wild-type starch. The nature of the modified starches makes them an interesting candidate for replacement of non-renewable oxygen and grease barrier polymers used today.


Biomacromolecules | 2015

Nanostructural Morphology of Plasticized Wheat Gluten and Modified Potato Starch Composites: Relationship to Mechanical and Barrier Properties

Faraz Muneer; Mariette Andersson; Kristine Koch; Carolin Menzel; Mikael S. Hedenqvist; Mikael Gällstedt; Tomás S. Plivelic; Ramune Kuktaite

In the present study, we were able to produce composites of wheat gluten (WG) protein and a novel genetically modified potato starch (MPS) with attractive mechanical and gas barrier properties using extrusion. Characterization of the MPS revealed an altered chain length distribution of the amylopectin fraction and slightly increased amylose content compared to wild type potato starch. WG and MPS of different ratios plasticized with either glycerol or glycerol and water were extruded at 110 and 130 °C. The nanomorphology of the composites showed the MPS having semicrystalline structure of a characteristic lamellar arrangement with an approximately 100 Å period observed by small-angle X-ray scattering and a B-type crystal structure observed by wide-angle X-ray scattering analysis. WG has a structure resembling the hexagonal macromolecular arrangement as reported previously in WG films. A larger amount of β-sheets was observed in the samples 70/30 and 30/70 WG-MPS processed at 130 °C with 45% glycerol. Highly polymerized WG protein was found in the samples processed at 130 °C versus 110 °C. Also, greater amounts of WG protein in the blend resulted in greater extensibility (110 °C) and a decrease in both E-modulus and maximum stress at 110 and 130 °C, respectively. Under ambient conditions the WG-MPS composite (70/30) with 45% glycerol showed excellent gas barrier properties to be further explored in multilayer film packaging applications.


Journal of Polymers and The Environment | 2012

Properties of Wheat-Gluten/Montmorillonite Nanocomposite Films Obtained by a Solvent-Free Extrusion Process

Hasan Türe; Thomas O. J. Blomfeldt; Mikael Gällstedt; Mikael S. Hedenqvist

This is, to our knowledge, the first study of wheat-gluten-based nanocomposite films prepared by a solvent-free extrusion process. Wheat gluten/montmorillonite nanocomposite films were obtained in a single screw-extruder using urea as a combined denaturant and plasticizer. The oxygen permeability and water vapor transmission rate of the films decreased by respectively factors of 1.9 and 1.3 when 5 wt.% clay was added. At the same time, the stiffness increased by a factor of 1.5, without any critical loss of extensibility. Field emission scanning electron microscopy (FE-SEM) and Energy-dispersive X-ray analysis indicated that the clay particles were layered mainly in the plane of the extruded film. It was possible to identify individual platelets/tactoids with FE-SEM and, together with findings from transmission electron microscopy, atomic force microscopy and X-ray diffraction, it was concluded that the clay existed as individual clay platelets, intercalated tactoids and agglomerates. Thermogravimetric analysis showed that the thermal stability of the extrudates was improved by the addition of clay.

Collaboration


Dive into the Mikael Gällstedt's collaboration.

Top Co-Authors

Avatar

Mikael S. Hedenqvist

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramune Kuktaite

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Sung-Woo Cho

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

William R. Newson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hasan Türe

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Faiza Rasheed

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikael S. Hedenqvist

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge