Mikael Heglind
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikael Heglind.
The New England Journal of Medicine | 2009
Kirsi A. Virtanen; Martin E. Lidell; Janne Orava; Mikael Heglind; Rickard Westergren; Tarja Niemi; Markku Taittonen; Jukka Laine; Nina-Johanna Savisto; Sven Enerbäck; Pirjo Nuutila
Using positron-emission tomography (PET), we found that cold-induced glucose uptake was increased by a factor of 15 in paracervical and supraclavicular adipose tissue in five healthy subjects. We obtained biopsy specimens of this tissue from the first three consecutive subjects and documented messenger RNA (mRNA) and protein levels of the brown-adipocyte marker, uncoupling protein 1 (UCP1). Together with morphologic assessment, which showed numerous multilocular, intracellular lipid droplets, and with the results of biochemical analysis, these findings document the presence of substantial amounts of metabolically active brown adipose tissue in healthy adult humans.
Nature Medicine | 2013
Martin E. Lidell; Matthias J. Betz; Olof Dahlqvist Leinhard; Mikael Heglind; Louise Elander; Marc Slawik; Thomas Mussack; Daniel Nilsson; Thobias Romu; Pirjo Nuutila; Kirsi A. Virtanen; Felix Beuschlein; Anders Persson; Magnus Borga; Sven Enerbäck
The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.
Development | 2005
Jens Hjerling-Leffler; Frédéric Marmigère; Mikael Heglind; Anna Cederberg; Martin Koltzenburg; Sven Enerbäck; Patrik Ernfors
The boundary cap (BC) is a transient neural crest-derived group of cells located at the dorsal root entry zone (DREZ) that have been shown to differentiate into sensory neurons and glia in vivo. We find that when placed in culture, BC cells self-renew, show multipotency in clonal cultures and express neural crest stem cell (NCSCs) markers. Unlike sciatic nerve NCSCs, the BC-NCSC (bNCSCs) generates sensory neurons upon differentiation. The bNCSCs constitute a common source of cells for functionally diverse types of neurons, as a single bNCSC can give rise to several types of nociceptive and thermoreceptive sensory neurons. Our data suggests that BC cells comprise a source of multipotent sensory specified stem cells that persist throughout embryogenesis.
PLOS ONE | 2009
Hilmar Vidarsson; Rickard Westergren; Mikael Heglind; Sandra Rodrigo Blomqvist; Sylvie Breton; Sven Enerbäck
The vacuolar H+-ATPase dependent transport of protons across cytoplasmic membranes in FORE (forkhead related) cells of endolymphatic epithelium in the inner ear, intercalated cells of collecting ducts in the kidney and in narrow and clear cells of epididymis require expression of several subunits that assemble into a functional multimeric proton pump. We demonstrate that expression of four such subunits A1, B1, E2 and a4 all co-localize with the forkhead transcription factor Foxi1 in a subset of epithelial cells at these three locations. In cells, of such epithelia, that lack Foxi1 we fail to identify any expression of A1, B1, E2 and a4 demonstrating an important role for the transcription factor Foxi1 in regulating subunit availability. Promoter reporter experiments, electrophoretic mobility shift assays (EMSA) and site directed mutagenesis demonstrate that a Foxi1 expression vector can trans-activate an a4-promoter reporter construct in a dose dependent manner. Furthermore, we demonstrate using chromatin immunoprecipitation (ChIP) assays that Foxi1-dependent activation to a large extent depends on cis-elements at position −561/−547 in the a4 promoter. Thus, we provide evidence that Foxi1 is necessary for expression of at least four subunits in three different epithelia and most likely is a major determinant for proper assembly of a functional vacuolar H+-ATPase complex at these locations.
Molecular and Cellular Biology | 2005
Mikael Heglind; Anna Cederberg; Jorge B. Aquino; Guilherme Lucas; Patrik Ernfors; Sven Enerbäck
ABSTRACT To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-β-galactosidase reporter gene “knock-in” (Foxs1β-gal/β-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a β-galactosidase reporter gene. Staining for β-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1β-gal/β-gal mice perform significantly better (P < 0.01) on a rotating rod than do wt littermates. We have also noted a lower body weight gain (P < 0.05) in Foxs1β-gal/lβ-gal males on a high-fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1β-gal/β-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.
Diabetes | 2011
Martin E. Lidell; Erin L. Seifert; Rickard Westergren; Mikael Heglind; Adrienne Gowing; Valentina Sukonina; Zahra Arani; Paula Itkonen; Simonetta Wallin; Fredrik Westberg; Julia Fernandez-Rodriguez; Markku Laakso; Tommy Nilsson; Xiao-Rong Peng; Mary-Ellen Harper; Sven Enerbäck
OBJECTIVE Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitative real-time PCR. The potential of a direct transcriptional regulation of regulated genes was tested in promoter assays, and mitochondrial morphology was investigated by electron microscopy. Mitochondrial function was tested by measuring oxygen consumption and extracellular acidification rates as well as palmitate oxidation. RESULTS Enhanced expression of FOXC2 in adipocytes or in cells with no endogenous Foxc2 expression induces mitochondriogenesis and an elongated mitochondrial morphology. Together with increased aerobic metabolic capacity, increased palmitate oxidation, and upregulation of genes encoding respiratory complexes and of brown fat-related genes, Foxc2 also specifically induces mitochondrial fusion genes in adipocytes. Among tested forkhead genes, Foxc2 is unique in its ability to trans-activate the nuclear-encoded mitochondrial transcription factor A (mtTFA/Tfam) gene—a master regulator of mitochondrial biogenesis. In human adipose tissue the expression levels of mtTFA/Tfam and of fusion genes also correlate with that of Foxc2. CONCLUSIONS We previously showed that a high-calorie diet and insulin induce Foxc2 in adipocytes; the current findings identify a previously unknown role for Foxc2 as an important metabo-regulator of mitochondrial morphology and metabolism.
The Journal of Clinical Endocrinology and Metabolism | 2013
Matthias J. Betz; Marc Slawik; Martin E. Lidell; Andrea Osswald; Mikael Heglind; Daniel Nilsson; Urs Lichtenauer; Brigitte Mauracher; Thomas Mussack; Felix Beuschlein; Sven Enerbäck
CONTEXT Brown adipose tissue (BAT) is a metabolically highly active organ with increased thermogenic activity in rodents exposed to cold temperature. Recently its presence in the cervical adipose tissue of human adults and its association with a favorable metabolic phenotype have been reported. OBJECTIVE The objective of the study was to determine the prevalence of retroperitoneal BAT in human adults. DESIGN This was an observational cohort study. SETTING The study was conducted at a tertiary referral hospital. PATIENTS Fifty-seven patients who underwent surgery for benign adrenal tumors were included in this study. MAIN OUTCOME MEASURES Prevalence of retroperitoneal BAT adjacent to the removed adrenal tumor as determined by uncoupling protein 1 (UCP1) protein and mRNA expression was measured. RESULTS Using protein and mRNA expression analysis, we detected UCP1 protein in 26 of 57 patients (45.6%) as well as high mRNA expression of genes characteristic for brown adipocytes, independent of the adrenal tumor type. The presence of brown adipocytes within the retroperitoneal fat was associated with a significantly lower outdoor temperature during the month prior to surgery. Importantly, UCP1 expression on both mRNA and protein level was inversely correlated to outdoor temperature, whereas body mass index, sex, age, and diabetes status were not. CONCLUSIONS These findings suggest that human retroperitoneal adipose tissue can acquire a BAT phenotype, thereby adapting to environmental challenges. These adaptive processes might provide a valuable therapeutic target in the treatment of obesity and insulin resistance.
Journal of Immunology | 2011
Randi Mosenden; Pratibha Singh; Isabelle Cornez; Mikael Heglind; Anja Ruppelt; Michel Moutschen; Sven Enerbäck; Souad Rahmouni; Kjetil Taskén
Type I protein kinase A (PKA) is targeted to the TCR-proximal signaling machinery by the A-kinase anchoring protein ezrin and negatively regulates T cell immune function through activation of the C-terminal Src kinase. RI anchoring disruptor (RIAD) is a high-affinity competitor peptide that specifically displaces type I PKA from A-kinase anchoring proteins. In this study, we disrupted type I PKA anchoring in peripheral T cells by expressing a soluble ezrin fragment with RIAD inserted in place of the endogenous A-kinase binding domain under the lck distal promoter in mice. Peripheral T cells from mice expressing the RIAD fusion protein (RIAD-transgenic mice) displayed augmented basal and TCR-activated signaling, enhanced T cell responsiveness assessed as IL-2 secretion, and reduced sensitivity to PGE2- and cAMP-mediated inhibition of T cell function. Hyperactivation of the cAMP–type I PKA pathway is involved in the T cell dysfunction of HIV infection, as well as murine AIDS, a disease model induced by infection of C57BL/6 mice with LP-BM5, a mixture of attenuated murine leukemia viruses. LP-BM5–infected RIAD-transgenic mice resist progression of murine AIDS and have improved viral control. This underscores the cAMP–type I PKA pathway in T cells as a putative target for therapeutic intervention in immunodeficiency diseases.
Metabolism-clinical and Experimental | 2016
Thobias Romu; Camilla Vavruch; Olof Dahlqvist-Leinhard; Joakim Tallberg; Nils Dahlström; Anders Persson; Mikael Heglind; Martin E. Lidell; Sven Enerbäck; Magnus Borga; Fredrik Nyström
OBJECTIVE To study if repeated cold-exposure increases metabolic rate and/or brown adipose tissue (BAT) volume in humans when compared with avoiding to freeze. DESIGN Randomized, open, parallel-group trial. METHODS Healthy non-selected participants were randomized to achieve cold-exposure 1hour/day, or to avoid any sense of feeling cold, for 6weeks. Metabolic rate (MR) was measured by indirect calorimetry before and after acute cold-exposure with cold vests and ingestion of cold water. The BAT volumes in the supraclavicular region were measured with magnetic resonance imaging (MRI). RESULTS Twenty-eight participants were recruited, 12 were allocated to controls and 16 to cold-exposure. Two participants in the cold group dropped out and one was excluded. Both the non-stimulated and the cold-stimulated MR were lowered within the group randomized to avoid cold (MR at room temperature from 1841±199 kCal/24h to 1795±213 kCal/24h, p=0.047 cold-activated MR from 1900±150 kCal/24h to 1793±215 kCal/24h, p=0.028). There was a trend towards increased MR at room temperature following the intervention in the cold-group (p=0.052). The difference between MR changes by the interventions between groups was statistically significant (p=0.008 at room temperature, p=0.032 after cold-activation). In an on-treatment analysis after exclusion of two participants that reported ≥8days without cold-exposure, supraclavicular BAT volume had increased in the cold-exposure group (from 0.0175±0.015l to 0.0216±0.014l, p=0.049). CONCLUSIONS We found evidence for plasticity in metabolic rate by avoiding to freeze compared with cold-exposure in a randomized setting in non-selected humans.
Journal of The American Society of Nephrology | 2017
Sven Enerbäck; Daniel Nilsson; Noel Edwards; Mikael Heglind; Sumaya Alkanderi; Emma Ashton; Asma Deeb; Feras E.B. Kokash; Abdulrahim R.A. Bakhsh; William van’t Hoff; Stephen B. Walsh; Felice D’Arco; Arezoo Daryadel; Soline Bourgeois; Carsten A. Wagner; Robert Kleta; Detlef Bockenhauer; John A. Sayer
Maintenance of the composition of inner ear fluid and regulation of electrolytes and acid-base homeostasis in the collecting duct system of the kidney require an overlapping set of membrane transport proteins regulated by the forkhead transcription factor FOXI1. In two unrelated consanguineous families, we identified three patients with novel homozygous missense mutations in FOXI1 (p.L146F and p.R213P) predicted to affect the highly conserved DNA binding domain. Patients presented with early-onset sensorineural deafness and distal renal tubular acidosis. In cultured cells, the mutations reduced the DNA binding affinity of FOXI1, which hence, failed to adequately activate genes crucial for normal inner ear function and acid-base regulation in the kidney. A substantial proportion of patients with a clinical diagnosis of inherited distal renal tubular acidosis has no identified causative mutations in currently known disease genes. Our data suggest that recessive mutations in FOXI1 can explain the disease in a subset of these patients.