Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikael Pontarp is active.

Publication


Featured researches published by Mikael Pontarp.


Ecology Letters | 2015

The ecological forecast horizon, and examples of its uses and determinants

Owen L. Petchey; Mikael Pontarp; Thomas M. Massie; Sonia Kéfi; Arpat Ozgul; Maja Weilenmann; Gian Marco Palamara; Florian Altermatt; Blake Matthews; Jonathan M. Levine; Dylan Z. Childs; Brian J. McGill; Michael E. Schaepman; Bernhard Schmid; Piet Spaak; Andrew P. Beckerman; Frank Pennekamp; Ian S. Pearse

Forecasts of ecological dynamics in changing environments are increasingly important, and are available for a plethora of variables, such as species abundance and distribution, community structure and ecosystem processes. There is, however, a general absence of knowledge about how far into the future, or other dimensions (space, temperature, phylogenetic distance), useful ecological forecasts can be made, and about how features of ecological systems relate to these distances. The ecological forecast horizon is the dimensional distance for which useful forecasts can be made. Five case studies illustrate the influence of various sources of uncertainty (e.g. parameter uncertainty, environmental variation, demographic stochasticity and evolution), level of ecological organisation (e.g. population or community), and organismal properties (e.g. body size or number of trophic links) on temporal, spatial and phylogenetic forecast horizons. Insights from these case studies demonstrate that the ecological forecast horizon is a flexible and powerful tool for researching and communicating ecological predictability. It also has potential for motivating and guiding agenda setting for ecological forecasting research and development.


Applied and Environmental Microbiology | 2012

Recruitment of Members from the Rare Biosphere of Marine Bacterioplankton Communities after an Environmental Disturbance

Johanna Sjöstedt; Per Koch-Schmidt; Mikael Pontarp; Björn Canbäck; Anders Tunlid; Per Lundberg; Åke Hagström; Lasse Riemann

ABSTRACT A bacterial community may be resistant to environmental disturbances if some of its species show metabolic flexibility and physiological tolerance to the changing conditions. Alternatively, disturbances can change the composition of the community and thereby potentially affect ecosystem processes. The impact of disturbance on the composition of bacterioplankton communities was examined in continuous seawater cultures. Bacterial assemblages from geographically closely connected areas, the Baltic Sea (salinity 7 and high dissolved organic carbon [DOC]) and Skagerrak (salinity 28 and low DOC), were exposed to gradual opposing changes in salinity and DOC over a 3-week period such that the Baltic community was exposed to Skagerrak salinity and DOC and vice versa. Denaturing gradient gel electrophoresis and clone libraries of PCR-amplified 16S rRNA genes showed that the composition of the transplanted communities differed significantly from those held at constant salinity. Despite this, the growth yields (number of cells ml−1) were similar, which suggests similar levels of substrate utilization. Deep 454 pyrosequencing of 16S rRNA genes showed that the composition of the disturbed communities had changed due to the recruitment of phylotypes present in the rare biosphere of the original community. The study shows that members of the rare biosphere can become abundant in a bacterioplankton community after disturbance and that those bacteria can have important roles in maintaining ecosystem processes.


Proceedings of the Royal Society B: Biological Sciences; 279(1746), pp 4457-4463 (2012) | 2012

Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction.

Maria Strandh; Helena Westerdahl; Mikael Pontarp; Björn Canbäck; Marie-Pierre Dubois; Christian Miquel; Pierre Taberlet; Francesco Bonadonna

Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.


Methods in Ecology and Evolution | 2015

Big answers from small worlds: a user's guide for protist microcosms as a model system in ecology and evolution

Florian Altermatt; Emanuel A. Fronhofer; Aurélie Garnier; Andrea Giometto; Frederik Hammes; Jan Klecka; Delphine Legrand; Elvira Mächler; Thomas M. Massie; Frank Pennekamp; Marco Plebani; Mikael Pontarp; Nicolas Schtickzelle; Virginie Thuillier; Owen L. Petchey

Laboratory microcosm experiments using protists as model organisms have a long tradition and are widely used to investigate general concepts in population biology, community ecology and evolutionary biology. Many variables of interest are measured in order to study processes and patterns at different spatiotemporal scales and across all levels of biological organization. This includes measurements of body size, mobility or abundance, in order to understand population dynamics, dispersal behaviour and ecosystem processes. Also, a variety of manipulations are employed, such as temperature changes or varying connectivity in spatial microcosm networks. Past studies, however, have used varying methods for maintenance, measurement, and manipulation, which hinders across-study comparisons and meta-analyses, and the added value they bring. Furthermore, application of techniques such as flow cytometry, image and video analyses, and in situ environmental probes provide novel and improved opportunities to quantify variables of interest at unprecedented precision and temporal resolution. Here, we take the first step towards a standardization of well-established and novel methods and techniques within the field of protist microcosm experiments. We provide a comprehensive overview of maintenance, measurement and manipulation methods. An extensive supplement contains detailed protocols of all methods, and these protocols also exist in a community updateable online repository. We envision that such a synthesis and standardization of methods will overcome shortcomings and challenges faced by past studies and also promote activities such as meta-analyses and distributed experiments conducted simultaneously across many different laboratories at a global scale.


Microbial Ecology | 2012

Phylogenetic Analysis Suggests That Habitat Filtering Is Structuring Marine Bacterial Communities Across the Globe

Mikael Pontarp; Björn Canbäck; Anders Tunlid; Per Lundberg

The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes.


The American Naturalist | 2015

The Biogeography of Adaptive Radiations and the Geographic Overlap of Sister Species

Mikael Pontarp; Jörgen Ripa; Per Lundberg

The biogeography of speciation and what can be learned about the past mode of speciation from current biogeography of sister species are recurrent problems in evolution. We used a trait- and individual-based, eco-evolutionary model to simulate adaptive radiations and recorded the geographical overlap of species during and after evolutionary branching (speciation). We compared the spatial overlap among sister species in the fully saturated community with the overlap at the speciation event. The mean geographic overlap at speciation varied continuously from complete (sympatry) to none (allopatry), depending on local and regional environmental heterogeneity and the rate of dispersal. The distribution of overlap was, however, in some cases considerably bimodal. This tendency was most expressed at large values of regional heterogeneity, corresponding to sharp environmental contrasts. The mean geographic overlap also varied during the course of a radiation, sometimes with a consistent negative trend over time. The speciations that resulted in currently observable end community sister species were therefore not an unbiased sample of all speciations throughout the radiation. Postspeciation range shifts (causing increased overlap) occurred most frequently when dispersal was high or when local habitat heterogeneity was low. Our results help us understand how the patterns of geographic mode of speciation emerge. We also show the difficulty in inferring the geographical speciation mode from phylogenies and the biogeography of extant species.


Proceedings of the Royal Society B: Biological Sciences | 2016

Community trait overdispersion due to trophic interactions: concerns for assembly process inference.

Mikael Pontarp; Owen L. Petchey

The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference.


bioRxiv | 2017

Inferring processes of community assembly from macroscopic patterns: the case for inclusive and mechanistic approaches

Mikael Pontarp; Åke Brännström; Owen L. Petchey

Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as the causal link between process and pattern is often lacking and processes known to be important are ignored. Here, we revisit current knowledge on community assembly across scales and, in line with several reviews that have outlined the features and challenges associated with current inference techniques, we identify a discrepancy between features of real communities and current inference techniques. We argue, that mechanistic eco-evolutionary models in combination with novel model fitting and model evaluation techniques can provide avenues for more accurate, reliable and inclusive inference. To exemplify, we implement a trait-based and spatially explicit dynamic eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources. This suggested approach can be computationally intensive, and model fitting and parameter estimation can be challenging. We discuss optimization of model implementation, data requirements and availability, and Approximate Bayesian Computation (ABC) as potential solutions to challenges that may arise in our quest for better inference techniques.


Evolutionary Ecology | 2015

Adaptation of timing of life history traits and population dynamic responses to climate change in spatially structured populations

Mikael Pontarp; Jacob Johansson; Niclas Jonzén; Per Lundberg

Abstract Changes in the seasonal timing of life history events are documented effects of climate change. We used a general model to study how dispersal and competitive interactions affect eco-evolutionary responses to changes in the temporal distribution of resources over the season. Specifically, we modeled adaptation of the timing of reproduction and population dynamic responses in two competing populations that disperse between two habitats characterized by an early and late resource peak. We investigated three scenarios of environmental change: (1) food peaks advance in both habitats, (2) in the late habitat only and (3) in the early habitat only. At low dispersal rates the evolutionarily stable timing of reproduction closely matched the local resource peak and the environmental change typically caused population decline. Larger dispersal rates rendered less intuitive eco-evolutionary population responses. First, dispersal caused mismatch between evolutionarily stable timing of reproduction and local resource peaks and as a result, reproductive output for subpopulations could increase as well as decrease when resource availability underwent temporal shifts. Second, population responses were contingent on competition between populations. This could accelerate population declines and cause extinctions or even reverse population trends from negative to positive compared to the low dispersal case. When dispersal rate was large and the early resource peak was advanced available niche space was reduced. Hence, even when a population survived the environmental change and obtained positive equilibrium population density, subsequent adaptation of competing populations could drive it to extinction due to convergent evolution and competitive exclusion. These results shed new light on the role of competition and dispersal for the evolution of timing of life history events and provide guidelines for understanding short and long-term population response to climate change.


Proceedings of the Royal Society B: Biological Sciences | 2018

Ecological opportunity and predator–prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations

Mikael Pontarp; Owen L. Petchey

Much of lifes diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses.

Collaboration


Dive into the Mikael Pontarp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Altermatt

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elvira Mächler

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Emanuel A. Fronhofer

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge