Mikael Puurtinen
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikael Puurtinen.
Proceedings of the Royal Society of London B: Biological Sciences | 2009
Mikael Puurtinen; Tapio Mappes
A distinctive feature of human behaviour is the widespread occurrence of cooperation among unrelated individuals. Explaining the maintenance of costly within-group cooperation is a challenge because the incentive to free ride on the efforts of other group members is expected to lead to decay of cooperation. However, the costs of cooperation can be diminished or overcome when there is competition at a higher level of organizational hierarchy. Here we show that competition between groups resolves the paradigmatic ‘public goods’ social dilemma and increases within-group cooperation and overall productivity. Further, group competition intensifies the moral emotions of anger and guilt associated with violations of the cooperative norm. The results suggest an important role for group conflict in the evolution of human cooperation and moral emotions.
The American Naturalist | 2009
Mikael Puurtinen; Tarmo Ketola; Janne S. Kotiaho
Genetic benefits from mate choice could be attained by choosing mates with high heritable quality (“good genes”) and that are genetically compatible (“compatible genes”). We clarify the conceptual and empirical framework for estimating genetic benefits of mate choice, stressing that benefits must be measured from offspring fitness because there are no unequivocal surrogates for genetic quality of individuals or for compatibility of parents. We detail the relationship between genetic benefits and additive and nonadditive genetic variance in fitness, showing that the benefits have been overestimated in previous verbal treatments. We point out that additive benefits readily arise from nonadditive gene action and that the idea of “heritable nonadditive benefits” is a misconception. We review the empirical evidence of the magnitude of benefits of good genes and compatible genes in animal populations, and we outline the most promising future directions for empirical research on the genetic benefits of mate choice.
The American Naturalist | 2002
Mikael Puurtinen; Veijo Kaitala
Limited availability of mating partners has been proposed as an explanation for the occurrence of simultaneous hermaphroditism in animals with pair mating. When low population density or low mobility of a species limits the number of potential mates, simultaneous hermaphrodites may have a selective advantage because, first, they are able to adjust the allocation of resources between male and female functions in order to maximize fitness; second, in a hermaphroditic population the likelihood of meeting a partner is higher because all individuals are potential mates; and, third, in the absence of mating partners, many simultaneously hermaphroditic animals have the option of reproducing through self‐fertilization. Recognizing that mate availability is central to the existing theory of hermaphroditism in animals, it is important to examine the effects of mate search on predictions of the stability of hermaphroditism. Many hermaphroditic animals can increase the number of potential mates they contact by active searching. However, since mate search has costs in terms of time and energy, the increased number of potential mates will be traded off against the amount of resources that can be allocated to the production of gametes. We explore the consequences of this trade‐off to the evolution of mating strategies and to the selective advantage of self‐fertilization. We show that in low and moderate population densities, poor mate‐search efficiency and high costs of searching stabilize hermaphroditism and bias sex allocation toward female function. In addition, in very low population densities, there is strong selective advantage for self‐fertilization, but this advantage decreases considerably in species with high mate‐search efficiency. Most important, however, we present a novel evolutionary prediction: when mate search is efficient, disruptive frequency‐dependent selection on time allocation to mate search leads to the evolution of searching and nonsearching phenotypes and, ultimately, to the evolution of males and females.
Evolution | 2011
Mikael Puurtinen
Mating between related individuals results in inbreeding depression, and this has been thought to select against incestuous matings. However, theory predicts that inbreeding can also be adaptive if it increases the representation of genes identical by descent in future generations. Here, I recapitulate the theory of inclusive fitness benefits of incest, and extend the existing theory by deriving the stable level of inbreeding in populations practicing mate choice for optimal inbreeding. The parsimonious assumptions of the model are that selection maximizes inclusive fitness, and that inbreeding depression is a linear function of homozygosity of offspring. The stable level of inbreeding that maximizes inclusive fitness, and is expected to evolve by natural selection, is shown to be less than previous theory suggests. For wide range of realistic inbreeding depression strengths, mating with intermediately related individuals maximizes inclusive fitness. The predicted preference for intermediately related individuals as reproductive partners is in qualitative agreement with empirical evidence from mate choice experiments and reproductive patterns in nature.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Lauri Sääksvuori; Tapio Mappes; Mikael Puurtinen
Understanding how societies resolve conflicts between individual and common interests remains one of the most fundamental issues across disciplines. The observation that humans readily incur costs to sanction uncooperative individuals without tangible individual benefits has attracted considerable attention as a proximate cause as to why cooperative behaviours might evolve. However, the proliferation of individually costly punishment has been difficult to explain. Several studies over the last decade employing experimental designs with isolated groups have found clear evidence that the costs of punishment often nullify the benefits of increased cooperation, rendering the strong human tendency to punish a thorny evolutionary puzzle. Here, we show that group competition enhances the effectiveness of punishment so that when groups are in direct competition, individuals belonging to a group with punishment opportunity prevail over individuals in a group without this opportunity. In addition to competitive superiority in between-group competition, punishment reduces within-group variation in success, creating circumstances that are highly favourable for the evolution of accompanying group-functional behaviours. We find that the individual willingness to engage in costly punishment increases with tightening competitive pressure between groups. Our results suggest the importance of intergroup conflict behind the emergence of costly punishment and human cooperation.
Evolution | 2004
Mikael Puurtinen; K. Emily Knott; Susanna Suonpää; Tapio van Ooik; Veijo Kaitala
Abstract Population genetic theory predicts that in small populations, random genetic drift will fix and accumulate slightly deleterious mutations, resulting in reduced reproductive output. This genetic load due to random drift (i.e., drift load) can increase the extinction risk of small populations. We studied the relationship between genetic variability (indicator of past population size) and reproductive output in eight isolated, natural populations of the hermaphroditic snail Lymnaea stagnalis. In a common laboratory environment, snails from populations with the lowest genetic variability mature slower and have lower fecundity than snails from genetically more variable populations. This result suggests that past small population size has resulted in increased drift load, as predicted. The relationship between genetic variability and reproductive output is independent of the amount of nonrandom mating within populations. However, reproductive output and the current density of snails in the populations were not correlated. Instead, data from the natural populations suggest that trematode parasites may determine, at least in part, population densities of the snails.
Journal of Evolutionary Biology | 2012
Nina Pekkala; K. E. Knott; Janne S. Kotiaho; Kari Nissinen; Mikael Puurtinen
Interpopulation hybridization can increase the viability of small populations suffering from inbreeding and genetic drift, but it can also result in outbreeding depression. The outcome of hybridization can depend on various factors, including the level of genetic divergence between the populations, and the number of source populations. Furthermore, the effects of hybridization can change between generations following the hybridization. We studied the effects of population divergence (low vs. high level of divergence) and the number of source populations (two vs. four source populations) on the viability of hybrid populations using experimental Drosophila littoralis populations. Population viability was measured for seven generations after hybridization as proportion of populations facing extinction and as per capita offspring production. Hybrid populations established at the low level of population divergence were more viable than the inbred source populations and had higher offspring production than the large control population. The positive effects of hybridization lasted for the seven generations. In contrast, at the high level of divergence, the viability of the hybrid populations was not significantly different from the inbred source populations, and offspring production in the hybrid populations was lower than in the large control population. The number of source populations did not have a significant effect at either low or high level of population divergence. The study shows that the benefits of interpopulation hybridization may decrease with increasing divergence of the populations, even when the populations share identical environmental conditions. We discuss the possible genetic mechanisms explaining the results and address the implications for conservation of populations.
Evolution | 2004
Mikael Puurtinen; Mirjami Hytönen; K. Emily Knott; Jouni Taskinen; Kari Nissinen; Veijo Kaitala
Abstract The amount and distribution of genetic variability in host populations can have significant effects on the outcome of host‐parasite interactions. We studied the effect of mating system and genetic variability on susceptibility of Lymnaea stagnalis snails to trematode parasites. Mating system of snails from eight populations differing in the amount of genetic variability was manipulated, and self‐ and cross‐fertilized offspring were exposed to naturally occurring trematode parasites in a controlled lake experiment. Susceptibility of snails varied between populations, but mating‐system treatment did not have a significant effect. Heterozygosity of snails was negatively correlated with the probability of trematode infection, however, suggesting that parasitic diseases may pose a serious threat to populations lacking genetic variability.
Journal of Evolutionary Biology | 2007
Mikael Puurtinen; K. Emily Knott; S. Suonpää; Kari Nissinen; Veijo Kaitala
We have quantified the natural mating system in eight populations of the simultaneously hermaphroditic aquatic snail Lymnaea stagnalis, and studied the ecological and genetic forces that may be directing mating system evolution in this species. We investigated whether the natural mating system can be explained by the availability of mates, by the differential survival of self‐ and cross‐fertilized snails in nature, and by the effects of mating system on parental fecundity and early survival. The natural mating system of L. stagnalis was found to be predominantly cross‐fertilizing. Density of snails in the populations had no relationship with the mating system, suggesting that outcrossing rates are not limited by mate availability at the population densities observed. Contrary to expectations for outcrossing species, we detected no evidence for inbreeding depression in survival in nature with inferential population genetic methods. Further, experimental manipulations of mating system in the laboratory revealed that self‐fertilization had no effect on parental fecundity, and only minor effects on offspring survival. Predominance of cross‐fertilization despite low apparent fitness costs of self‐fertilization is at odds with the paradigm that high self‐fertilization depression is necessary for maintenance of cross‐fertilization in self‐compatible hermaphrodites.
Evolution | 2006
Mikael Puurtinen; Veijo Kaitala
Abstract The initial evolution of conspicuous warning signals presents an evolutionary problem because selection against rare conspicuous signals is presumed to be strong, and new signals are rare when they first arise. Several possible solutions have been offered to solve this apparent evolutionary paradox, but disagreement persists over the plausibility of some of the proposed mechanisms. In this paper, we construct a deterministic numerical simulation model that allows us to derive the strength of selection on novel warning signals in a wide range of biologically relevant situations. We study the effects of predator psychology (learning, rate of mistaken attacks, and neophobia) on selection. We also study the how prey escape, predation intensity, number of predators, and abundance of different prey types affects selection. The model provides several important results. Selection on novel warning signals is number rather than frequency dependent. In most cases, there exists a threshold number of aposematic individuals below which aposematism is selected against and above which aposematism is selected for. Signal conspicuousness (which increases detection rate) and distinctiveness (which allows predator to distinguish defended from nondefended prey) have opposing effects on evolution of warning signals. A more conspicuous warning signal cannot evolve unless it makes the prey more distinctive from palatable prey, reducing mistaken attacks by predators. A novel warning signal that is learned quickly can spread from lower abundance more easily than a signal that is learned more slowly. However, the relative rate at which the resident signal and the novel signal are learned is irrelevant for the spread of the novel signal. Long-lasting neophobia can facilitate the spread of novel warning signals. Individual selection via the ability of defended prey to escape from predator is not likely to facilitate evolution of conspicuous warning signals if both the resident (cryptic) morph and the novel morph have the same escape probability. Predation intensity (defined as the proportion of palatable prey eaten by the predator) has a strong effect on selection. More intense predation results in strong selection against rare signals, but also strong selective advantage to common signals. The threshold number of aposematic individuals is lower when predation is intense. Thus, the evolution of warning signals may be more likely in environments where predation is intense. The effect of numbers of predators depends on whether predation intensity also changes. When predation intensity is constant, increasing numbers of predators raises the threshold number of aposematic individuals, and thus makes evolution of aposematism more difficult. If predation intensity increases in parallel with number of predators, the threshold number of aposematic individuals does not change much, but selection becomes more intense on both sides of the threshold.