Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikael Sander is active.

Publication


Featured researches published by Mikael Sander.


The Journal of Physiology | 2003

Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia.

Jim Hansen; Mikael Sander

Acute exposure to hypoxia causes chemoreflex activation of the sympathetic nervous system. During acclimatization to high altitude hypoxia, arterial oxygen content recovers, but it is unknown to what degree sympathetic activation is maintained or normalized during prolonged exposure to hypoxia. We therefore measured sympathetic nerve activity directly by peroneal microneurography in eight healthy volunteers (24 ± 2 years of age) after 4 weeks at an altitude of 5260 m (Chacaltaya, Bolivian Andes) and at sea level (Copenhagen). The subjects acclimatized well to altitude, but in every subject sympathetic nerve activity was highly elevated at altitude vs. sea level (48 ± 5 vs. 16 ± 3 bursts min−1, respectively, P < 0.05), coinciding with increased mean arterial blood pressure (87 ± 3 vs. 77 ± 2 mmHg, respectively, P < 0.05). To examine the underlying mechanisms, we administered oxygen (to eliminate chemoreflex activation) and saline (to reduce cardiopulmonary baroreflex deactivation). These interventions had minor effects on sympathetic activity (48 ± 5 vs. 38 ± 4 bursts min−1, control vs. oxygen + saline, respectively, P < 0.05). Moreover, sympathetic activity was still markedly elevated (37 ± 5 bursts min−1) when subjects were re‐studied under normobaric, normoxic and hypervolaemic conditions 3 days after return to sea level. In conclusion, acclimatization to high altitude hypoxia is accompanied by a striking and long‐lasting sympathetic overactivity. Surprisingly, chemoreflex activation by hypoxia and baroreflex deactivation by dehydration together could account for only a small part of this response, leaving the major underlying mechanisms unexplained.


Hypertension | 1999

A Large Blood Pressure–Raising Effect of Nitric Oxide Synthase Inhibition in Humans

Mikael Sander; Bahman Chavoshan; Ronald G. Victor

In experimental animals, systemic administration of nitric oxide synthase (NOS) inhibitors causes large increases in blood pressure that are in part sympathetically mediated. The aim of this study was to determine the extent to which these conclusions can be extrapolated to humans. In healthy normotensive humans, we measured blood pressure in response to two NOS inhibitors, NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME), the latter of which recently became available for use in humans. The major new findings are 3-fold. First, L-NAME produced robust increases in blood pressure that were more than 2 times larger than those previously reported in humans with L-NMMA and approximated those seen in experimental animals. L-NAME (4 mg/kg) raised mean arterial pressure by 24+/-2 mm Hg (n=27, P<0.001), whereas in subjects who received both inhibitors, a 12-fold higher dose of L-NMMA (50 mg/kg) raised mean arterial pressure by 15+/-2 mm Hg (n=4, P<0.05 vs L-NAME). Second, the L-NAME-induced increases in blood pressure were caused specifically by NOS inhibition because they were reversed by L-arginine (200 mg/kg, n=12) but not D-arginine (200 mg/kg, n=6) and because NG-nitro-D-arginine methyl ester (4 mg/kg, n=5) had no effect on blood pressure. Third, in humans, there is an important sympathetic component to the blood pressure-raising effect of NOS inhibition. alpha-Adrenergic blockade with phentolamine (0.2 mg/kg, n=9) attenuated the L-NAME-induced increase in blood pressure by 40% (P<0.05). From these data, we conclude that pharmacological inhibition of NOS causes large increases in blood pressure that are in part sympathetically mediated in humans as well as experimental animals.


Hypertension | 1995

Sympathetically Mediated Hypertension Caused by Chronic Inhibition of Nitric Oxide

Mikael Sander; Pernille G. Hansen; Ronald G. Victor

Pharmacological inhibition of nitric oxide synthase causes sustained hypertension in many animal species. Although this hypertension has been attributed to inhibition of endothelium-dependent vasodilation, short-term studies in anesthetized preparations have advanced the hypothesis that there could be a sympathetic component to this hypertension. To test this hypothesis we measured intra-arterial pressure directly before and after 1 week of treatment with the nitric oxide synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, approximately 80 mg/kg per day in drinking water) in conscious unrestrained rats with or without chronic guanethidine-induced sympathectomy. The major new finding is that the hypertensive response to L-NAME was greatly attenuated by sympathectomy. With L-NAME, mean arterial pressure increased from 101 +/- 3 to 152 +/- 6 mm Hg in rats without sympathectomy (n = 11) but only from 96 +/- 2 to 122 +/- 3 mm Hg in rats with sympathectomy (n = 15, +52 +/- 5 versus +27 +/- 4 mm Hg, P < .01). Sympathectomy did not alter maximal endothelium-dependent vasodilation assessed by femoral vascular responses to intra-arterial acetylcholine or bradykinin, indicating that the differing hypertensive responses to L-NAME in rats with versus without sympathectomy could be related to inhibition of neuronal rather than endothelial nitric oxide synthesis. We also found that L-NAME-induced hypertension, once developed, is completely reversed by acute ganglionic blockade. In conclusion, these findings identify an important sympathetic neural component to the sustained hypertension produced by pharmacological inhibition of nitric oxide in the rat.


The Journal of Physiology | 2002

Nitric oxide‐dependent modulation of sympathetic neural control of oxygenation in exercising human skeletal muscle

Bahman Chavoshan; Mikael Sander; Troy E. Sybert; Jim Hansen; Ronald G. Victor; Gail D. Thomas

Nitric oxide (NO) attenuates α‐adrenergic vasoconstriction in contracting rodent skeletal muscle, but it is unclear if NO plays a similar role in human muscle. We therefore hypothesized that in humans, NO produced in exercising skeletal muscle blunts the vasoconstrictor response to sympathetic activation. We assessed vasoconstrictor responses in the microcirculation of human forearm muscle using near‐infrared spectroscopy to measure decreases in muscle oxygenation during reflex sympathetic activation evoked by lower body negative pressure (LBNP). Experiments were performed before and after NO synthase inhibition produced by systemic infusion of NG‐nitro‐l‐arginine methyl ester (l‐NAME). Before l‐NAME, LBNP at −20 mmHg decreased muscle oxygenation by 20 ± 2 % in resting forearm and by 2 ± 3 % in exercising forearm (n= 20), demonstrating metabolic modulation of sympathetic vasoconstriction. As expected, l‐NAME increased mean arterial pressure by 17 ± 3 mmHg, leading to baroreflex‐mediated supression of baseline muscle sympathetic nerve activity (SNA). The increment in muscle SNA in response to LBNP at −20 mmHg also was attenuated after l‐NAME (before, +14 ± 2; after, +8 ± 1 bursts min−1; n= 6), but this effect of l‐NAME was counteracted by increasing LBNP to −40 mmHg (+19 ± 2 bursts min−1). After l‐NAME, LBNP at −20 mmHg decreased muscle oxygenation similarly in resting (−11 ± 3 %) and exercising (−10 ± 2 %) forearm (n= 12). Likewise, LBNP at −40 mmHg decreased muscle oxygenation both in resting (−19 ± 4 %) and exercising (−21 ± 5 %) forearm (n= 8). These data advance the hypothesis that NO plays an important role in modulating sympathetic vasoconstriction in the microcirculation of exercising muscle, because such modulation is abrogated by NO synthase inhibition with l‐NAME.


The Journal of Physiology | 2004

Inhibition of α-adrenergic vasoconstriction in exercising human thigh muscles

D. Walter Wray; Paul J. Fadel; Michael L. Smith; Peter B. Raven; Mikael Sander

The mechanisms underlying metabolic inhibition of sympathetic responses within exercising skeletal muscle remain incompletely understood. The aim of the present study was to test whether α2‐adrenoreceptor‐mediated vasoconstriction was more sensitive to metabolic inhibition than α1‐vasoconstriction during dynamic knee‐extensor exercise. We studied healthy volunteers using two protocols: (1) wide dose ranges of the α‐adrenoreceptor agonists phenylephrine (PE, α1 selective) and BHT‐933 (BHT, α2 selective) were administered intra‐arterially at rest and during 27 W knee‐extensor exercise (n= 13); (2) flow‐adjusted doses of PE (0.3 μg kg−1 l−1) and BHT (15 μg kg−1 l−1) were administered at rest and during ramped exercise (7 W to 37 W; n= 10). Ultrasound Doppler and thermodilution techniques provided direct measurements of femoral blood flow (FBF). PE (0.8 μg kg−1) and BHT (40 μg kg−1) produced comparable maximal reductions in FBF at rest (−58 ± 6 versus−64 ± 4%). Despite increasing the doses, PE (1.6 μg kg−1 min−1) and BHT (80 μg kg−1 min−1) caused significantly smaller changes in FBF during 27 W exercise (−13 ± 4 versus−3 ± 5%). During ramped exercise, significant vasoconstriction at lower intensities (7 and 17 W) was seen following PE (−16 ± 5 and −16 ± 4%), but not BHT (−2 ± 4 and −4 ± 5%). At the highest intensity (37 W), FBF was not significantly changed by either drug. Collectively, these data demonstrate metabolic inhibition of α‐adrenergic vasoconstriction in large postural muscles of healthy humans. Both α1‐ and α2‐adrenoreceptor agonists produce comparable vasoconstriction in the resting leg, and dynamic thigh exercise attenuates α1‐ and α2‐mediated vasoconstriction similarly. However, α2‐mediated vasoconstriction appears more sensitive to metabolic inhibition, because α2 is completely inhibited even at low workloads, whereas α1 becomes progressively inhibited with increasing workloads.


The Journal of Physiology | 2000

Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia

Jim Hansen; Mikael Sander; Christian F. Hald; Ronald G. Victor; Gail D. Thomas

1 Sympathetically evoked vasoconstriction is modulated by skeletal muscle contraction, but the underlying events are incompletely understood. During contraction, intramuscular oxygenation decreases with increasing exercise intensity. We therefore hypothesized that tissue hypoxia plays a crucial role in the attenuation of sympathetic vasoconstriction in contracting skeletal muscle. 2 In 19 subjects, near‐infrared spectroscopy was used to measure decreases in muscle oxygenation (ΔtHbO2+MbO2) as an estimate of the vasoconstrictor response to reflex sympathetic activation with lower body negative pressure (LBNP) in the microcirculation of resting and contracting forearm muscles. Oxygen delivery to the muscles was reduced by decreasing (a) arterial O2 content by breathing 10 % O2, or (b) muscle perfusion by applying forearm positive pressure (FPP, +40 mmHg). 3 In resting forearm, reflex sympathetic activation decreased muscle oxygenation by 11 ± 1 %. Handgrip alone at 5 and 20 % of maximal voluntary contraction (MVC) decreased muscle oxygenation by 4 ± 1 and 28 ± 4 %, respectively. When superimposed on handgrip, LBNP‐induced decreases in muscle oxygenation were preserved during handgrip at 5 % MVC, but were abolished during handgrip at 20 % MVC. Oral administration of aspirin (1 g) did not restore the latter response. 4 When the decrease in forearm muscle oxygenation elicited by handgrip at 20 % MVC was mimicked by either (a) systemic hypoxia plus 5 % handgrip (ΔtHbO2+MbO2, −32 ± 3 %), or (b) hypoperfusion of resting muscle by FPP (ΔtHbO2+MbO2, −26 ± 6 %), LBNP‐induced decreases in muscle oxygenation were greatly attenuated. 5 These data suggest that local tissue hypoxia is involved in the metabolic attenuation of sympathetic vasoconstriction in the microcirculation of exercising human skeletal muscle. The specific underlying mechanism remains to be determined, although products of the cyclo‐oxygenase pathway do not appear to be involved.


Scandinavian Journal of Medicine & Science in Sports | 2006

Exercise economy does not change after acclimatization to moderate to very high altitude

Carsten Lundby; Jose A. L. Calbet; Mikael Sander; G. van Hall; Robert S. Mazzeo; J. Stray-Gundersen; J. M. Stager; R. F. Chapman; Bengt Saltin; Benjamin D. Levine

For more than 60 years, muscle mechanical efficiency has been thought to remain unchanged with acclimatization to high altitude. However, recent work has suggested that muscle mechanical efficiency may in fact be improved upon return from prolonged exposure to high altitude. The purpose of the present work is to resolve this apparent conflict in the literature. In a collaboration between four research centers, we have included data from independent high‐altitude studies performed at varying altitudes and including a total of 153 subjects ranging from sea‐level (SL) residents to high‐altitude natives, and from sedentary to world‐class athletes. In study A (n=109), living for 20–22 h/day at 2500 m combined with training between 1250 and 2800 m caused no differences in running economy at fixed speeds despite low typical error measurements. In study B, SL residents (n=8) sojourning for 8 weeks at 4100 m and residents native to this altitude (n=7) performed cycle ergometer exercise in ambient air and in acute normoxia. Muscle oxygen uptake and mechanical efficiency were unchanged between SL and acclimatization and between the two groups. In study C (n=20), during 21 days of exposure to 4300 m altitude, no changes in systemic or leg VO2 were found during cycle ergometer exercise. However, at the substantially higher altitude of 5260 m decreases in submaximal VO2 were found in nine subjects with acute hypoxic exposure, as well as after 9 weeks of acclimatization. As VO2 was already reduced in acute hypoxia this suggests, at least in this condition, that the reduction is not related to anatomical or physiological adaptations to high altitude but to oxygen lack because of severe hypoxia altering substrate utilization. In conclusion, results from several, independent investigations indicate that exercise economy remains unchanged after acclimatization to high altitude.


Hypertension | 1997

The Sympathetic Nervous System Is Involved in the Maintenance but Not Initiation of the Hypertension Induced by Nω-Nitro-l-Arginine Methyl Ester

Mikael Sander; Jim Hansen; Ronald G. Victor

Studies in anesthetized animals have advanced the theory that there is an important neurogenic component to the hypertension caused by pharmacological inhibition of nitric oxide, but studies in conscious animals have produced conflicting evidence for and against this theory. To try to reconcile the seemingly contradictory data, we hypothesized that the neurogenic component of this hypertension is time dependent such that the sympathetic nervous system is involved primarily in the maintenance, rather than the initiation, of the hypertension. We measured intra-arterial pressure in conscious, unrestrained rats with and without guanethidine-induced sympathectomy during varying durations of intravenous N(omega)-nitro-L-arginine methyl ester (L-NAME). The major new finding is that sympathectomy had no effect on the hypertensive response to bolus injections of L-NAME but in the same rats it produced a greater than 50% attenuation in the hypertension seen after 6 days of continuous L-NAME (change in mean arterial pressure, 23+/-4 versus 55+/-4 mm Hg, P<.01, sympathectomy versus control). Using 8-hour infusions of L-NAME, we found that 60 minutes was the minimum time required for detecting a sympathectomy-sensitive component of L-NAME-induced hypertension. Furthermore, we demonstrate that the magnitude of this component increases further between 8 hours to 6 days of continuous L-NAME: it accounted for only 18% of the total hypertensive response at 8 hours but 61% after 6 days. From these experiments, we conclude that the importance of the sympathetic system in the pathogenesis of L-NAME-induced hypertension accrues slowly over hours and days, and thus its importance can be overlooked by focusing on the initial phase of the hypertension.


The Journal of Physiology | 2006

Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives

Carsten Lundby; Mikael Sander; Gerrit van Hall; Bengt Saltin; Jose A. L. Calbet

The tight relation between arterial oxygen content and maximum oxygen uptake within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O2 extraction capacity with chronic hypoxia, and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle O2 extraction at maximal exercise was 90.0 ± 1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O2 extraction was 83.2 ± 2.8% in the high altitude natives, and did not change with the induction of normoxia. The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min−1 mmHg−1) 55.2 ± 3.7 (SL), 48.0 ± 1.7 (W2), 37.8 ± 0.4 (W8) and 27.7 ± 1.5 (Nat). However, when correcting oxygen conductance for the observed reduction in maximal leg blood flow with acclimatization the effect diminished. When calculating a hypothetical leg at altitude using either the leg blood flow or the O2 conductance values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O2 conductance.


The Journal of Experimental Biology | 2004

Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle

Carsten Lundby; Henriette Pilegaard; Jesper L. Andersen; Gerrit van Hall; Mikael Sander; Jose A. L. Calbet

SUMMARY Increased skeletal muscle capillary density would be a logical adaptive mechanism to chronic hypoxic exposure. However, animal studies have yielded conflicting results, and human studies are sparse. Neoformation of capillaries is dependent on endothelial growth factors such as vascular endothelial growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1α expression inducing an increase in VEGF expression. We measured mRNA levels and capillary density in muscle biopsies from vastus lateralis obtained in sea level residents (SLR; N=8) before and after 2 and 8 weeks of exposure to 4100 m altitude and in Bolivian Aymara high-altitude natives exposed to approximately 4100 m altitude (HAN; N=7). The expression of HIF-1α or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than in SLR (2.4±0.1 vs 3.6±0.2; P<0.05). In conclusion, human muscle VEGF mRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents.

Collaboration


Dive into the Mikael Sander's collaboration.

Top Co-Authors

Avatar

Ronald G. Victor

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gail D. Thomas

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter B. Raven

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Bengt Saltin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Michael L. Smith

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Jose A. L. Calbet

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

Bahman Chavoshan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge