Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikael Segerstråle is active.

Publication


Featured researches published by Mikael Segerstråle.


Neuron | 2006

Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release.

Sari E. Lauri; Aino Vesikansa; Mikael Segerstråle; Graham L. Collingridge; John T. R. Isaac; Tomi Taira

Early in development, excitatory synapses transmit with low efficacy, one mechanism for which is a low probability of transmitter release (Pr). However, little is known about the developmental mechanisms that control activity-dependent maturation of the presynaptic release. Here, we show that during early development, transmission at CA3-CA1 synapses is regulated by a high-affinity, G protein-dependent kainate receptor (KAR), which is endogenously activated by ambient glutamate. By tonically depressing glutamate release, this mechanism sets the dynamic properties of neonatal inputs to favor transmission during high frequency bursts of activity, typical for developing neuronal networks. In response to induction of LTP, the tonic activation of KAR is rapidly down regulated, causing an increase in Pr and profoundly changing the dynamic properties of transmission. Early development of the glutamatergic connectivity thus involves an activity-dependent loss of presynaptic KAR function producing maturation in the mode of excitatory transmission from CA3 to CA1.


The Journal of Neuroscience | 2005

Endogenous Activation of Kainate Receptors Regulates Glutamate Release and Network Activity in the Developing Hippocampus

Sari E. Lauri; Mikael Segerstråle; Aino Vesikansa; François Maingret; Christophe Mulle; Graham L. Collingridge; John T. R. Isaac; Tomi Taira

Kainate receptors (KARs) are highly expressed throughout the neonatal brain, but their function during development is unclear. Here, we show that the maturation of the hippocampus is associated with a switch in the functional role of presynaptic KARs. In a developmental period restricted to the first postnatal week, endogenous l-glutamate tonically activates KARs at CA3 glutamatergic synapses to regulate release in an action potential-independent manner. At synapses onto pyramidal cells, KARs inhibit glutamate release via a G-protein and PKC-dependent mechanism. In contrast, at glutamatergic terminals onto CA3 interneurons, presynaptic KARs can facilitate release in a G-protein-independent mechanism. In both cell types, however, KAR activation strongly upregulates inhibitory transmission. We show that, through the interplay of these novel diverse mechanisms, KARs strongly regulate the characteristic synchronous network activity observed in the neonatal hippocampus. By virtue of this, KARs are likely to play a central role in the development of hippocampal synaptic circuits.


Neuropharmacology | 2007

Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus

Sari E. Lauri; Mary J. Palmer; Mikael Segerstråle; Aino Vesikansa; Tomi Taira; Graham L. Collingridge

The study of long-term potentiation (LTP) has for many years been the centre of a raging debate as to whether the process is expressed by presynaptic or postsynaptic mechanisms. Here we present evidence that two forms of synaptic plasticity at CA3-CA1 synapses in the hippocampus are expressed by presynaptic changes. One form is short-term potentiation (STP) and the other a neonatal form of early-LTP (E-LTP). We review recent experimental data that suggests that this latter form of LTP involves an increase in the probability of neurotransmitter release (Pr). We describe how this is caused by the rapid down-regulation of a high affinity kainate receptor, which otherwise responds to ambient levels of l-glutamate by depressing Pr.


Journal of Clinical Investigation | 2003

Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor α2

Jari Rossi; Karl-Heinz Herzig; Vootele Võikar; Päivi H. Hiltunen; Mikael Segerstråle; Matti S. Airaksinen

Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) for development and target innervation. Why GFRalpha2-deficient (Gfra2-/-) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRalpha2 protein was expressed in most substance P-containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2-/- mice, density of substance P-containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2-/- mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRalpha2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.


Neuropharmacology | 2007

Effects of the kainate receptor agonist ATPA on glutamatergic synaptic transmission and plasticity during early postnatal development.

Marko Sallert; Hemi Malkki; Mikael Segerstråle; Tomi Taira; Sari E. Lauri

Kainate type of glutamate receptors (KARs) modulate synaptic transmission in a developmentally regulated manner at several synapses in the brain. Previous studies have shown that KARs depress glutamatergic transmission at CA3-CA1 synapses in the hippocampus and these receptors are tonically active during early postnatal development. Here we use the GluR5 subunit specific agonist ATPA to further characterize the role of KARs in the modulation of synaptic transmission and plasticity in area CA1 during the first two weeks of life. We find that the depressant effect of ATPA on evoked fEPSPs/EPSCs is smaller in the neonate (P3-P6) than in the juvenile (P14-P18) rat CA1, due to endogenous activity of KAR in the neonate. Further, in the neonate but not juvenile CA1, ATPA downregulates action-potential independent transmission (mEPSCs) and its effects are dependent on protein kinase C activity. ATPA-induced depression of fEPSPs in the neonate occludes the presynaptic component of long-term depression (LTD). In contrast, at P14-P18, ATPA prevents LTD indirectly via GABAergic mechanisms. These data show that GluR5 signaling mechanisms are developmentally regulated and suggest distinct functional role for KARs in the modulation of synaptic transmission and plasticity at different stages of development.


The Journal of Neuroscience | 2010

High Firing Rate of Neonatal Hippocampal Interneurons Is Caused by Attenuation of Afterhyperpolarizing Potassium Currents by Tonically Active Kainate Receptors

Mikael Segerstråle; Juuso Juuri; Frederic Lanore; Petteri Piepponen; Sari E. Lauri; Christophe Mulle; Tomi Taira

In the neonatal hippocampus, the activity of interneurons shapes early network bursts that are important for the establishment of neuronal connectivity. However, mechanisms controlling the firing of immature interneurons remain elusive. We now show that the spontaneous firing rate of CA3 stratum lucidum interneurons markedly decreases during early postnatal development because of changes in the properties of GluK1 (formerly known as GluR5) subunit-containing kainate receptors (KARs). In the neonate, activation of KARs by ambient glutamate exerts a tonic inhibition of the medium-duration afterhyperpolarization (mAHP) by a G-protein-dependent mechanism, permitting a high interneuronal firing rate. During development, the amplitude of the apamine-sensitive K+ currents responsible for the mAHP increases dramatically because of decoupling between KAR activation and mAHP modulation, leading to decreased interneuronal firing. The developmental shift in the KAR function and its consequences on interneuronal activity are likely to have a fundamental role in the maturation of the synchronous neuronal oscillations typical for adult hippocampal circuitry.


Developmental Cell | 2015

MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation

Juha Saarikangas; Nazim Kourdougli; Yosuke Senju; Geneviève Chazal; Mikael Segerstråle; Rimante Minkeviciene; Jaakko Kuurne; Pieta K. Mattila; Lillian Garrett; Sabine M. Hölter; Lore Becker; Ildiko Racz; Wolfgang Hans; Thomas Klopstock; Wolfgang Wurst; Andreas Zimmer; Helmut Fuchs; Valérie Gailus-Durner; Martin Hrabě de Angelis; Lotta von Ossowski; Tomi Taira; Pekka Lappalainen; Claudio Rivera; Pirta Hotulainen

Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.


Neuropsychopharmacology | 2007

KCC2-deficient mice show reduced sensitivity to diazepam, but normal alcohol-induced motor impairment, gaboxadol-induced sedation, and neurosteroid-induced hypnosis.

Janne Tornberg; Mikael Segerstråle; Natalia Kulesskaya; Vootele Võikar; Tomi Taira; Matti S. Airaksinen

GABAA receptors mediate both fast phasic inhibitory postsynaptic potentials and slower tonic extrasynaptic inhibition. Hyperpolarizing phasic GABAergic inhibition requires the activity of neuron-specific chloride-extruding potassium–chloride cotransporter KCC2 in adult CNS. However, the possible role of KCC2 in tonic GABAergic inhibition and the associated behaviors is unknown. Here, we have examined the role of KCC2 in phasic vs tonic GABA inhibition by measuring the behavioral effects of pharmacological agents that presumably enhance phasic vs tonic inhibition in mice that retain 15–20% of normal KCC2 protein levels. These KCC2-deficient mice show decreased sensitivity to diazepam-induced sedation and motor impairment consistent with the reported role for KCC2 in fast hyperpolarizing inhibition. In contrast, the mice exhibit normal responses to low-dose alcohol-induced motor impairment, gaboxadol-induced sedation, and neurosteroid-induced hypnosis; behaviors thought to be associated with tonic GABAergic inhibition. Electrophysiological recordings show that the tonic conductance is not affected. The results suggest that KCC2 activity is more critical for behaviors dependent on phasic than tonic GABAergic inhibition.


PLOS ONE | 2014

Gene expression alterations in the cerebellum and granule neurons of Cstb(-/-) mouse are associated with early synaptic changes and inflammation.

Tarja Joensuu; Saara Tegelberg; Eva Reinmaa; Mikael Segerstråle; Paula Hakala; Heidi Pehkonen; Esa R. Korpi; Jaana Tyynelä; Tomi Taira; Iiris Hovatta; Outi Kopra; Anna-Elina Lehesjoki

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited neurodegenerative disease, manifesting with myoclonus, seizures and ataxia, caused by mutations in the cystatin B (CSTB) gene. With the aim of understanding the molecular basis of pathogenetic events in EPM1 we characterized gene expression changes in the cerebella of pre-symptomatic postnatal day 7 (P7) and symptomatic P30 cystatin B -deficient (Cstb−/−) mice, a model for the disease, and in cultured Cstb−/− cerebellar granule cells using a pathway-based approach. Differentially expressed genes in P7 cerebella were connected to synaptic function and plasticity, and in cultured cerebellar granule cells, to cell cycle, cytoskeleton, and intracellular transport. In particular, the gene expression data pinpointed alterations in GABAergic pathway. Electrophysiological recordings from Cstb−/− cerebellar Purkinje cells revealed a shift of the balance towards decreased inhibition, yet the amount of inhibitory interneurons was not declined in young animals. Instead, we found diminished number of GABAergic terminals and reduced ligand binding to GABAA receptors in Cstb−/− cerebellum. These results suggest that alterations in GABAergic signaling could result in reduced inhibition in Cstb−/− cerebellum leading to the hyperexcitable phenotype of Cstb−/− mice. At P30, the microarray data revealed a marked upregulation of immune and defense response genes, compatible with the previously reported early glial activation that precedes neuronal degeneration. This further implies the role of early-onset neuroinflammation in the pathogenesis of EPM1.


PLOS ONE | 2014

Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

Heidi O. Nousiainen; Ileana B. Quintero; Timo T. Myöhänen; Vootele Võikar; Jelena Mijatovic; Mikael Segerstråle; Annakaisa Herrala; Natalia Kulesskaya; Anitta E. Pulkka; Tanja Kivinummi; Usama Abo-Ramadan; Tomi Taira; T. Petteri Piepponen; Heikki Rauvala; Pirkko Vihko

Prostatic acid phosphatase (PAP), the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG), but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP) in the brain by utilizing mice deficient in TMPAP (PAP−/− mice). Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

Collaboration


Dive into the Mikael Segerstråle's collaboration.

Top Co-Authors

Avatar

Tomi Taira

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rimante Minkeviciene

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge