Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mike-Andrew Westhoff is active.

Publication


Featured researches published by Mike-Andrew Westhoff.


Cancer Research | 2008

Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis.

Daniela Opel; Mike-Andrew Westhoff; Ariane Bender; Veit Braun; Klaus-Michael Debatin; Simone Fulda

The aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway has been reported to correlate with adverse clinical outcome in human glioblastoma in vivo. However, the question of how this survival network can be successfully targeted to restore the sensitivity of glioblastoma to apoptosis induction has not yet been answered. Here, we report that inhibition of PI3K by LY294002 broadly sensitizes wild-type and mutant PTEN glioblastoma cells to both death receptor- and chemotherapy-induced apoptosis, whereas mammalian target of rapamycin (mTOR) inhibition is not sufficient to restore apoptosis sensitivity. LY294002 significantly enhances apoptosis triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), agonistic anti-CD95 antibodies, or several anticancer drugs (i.e., doxorubicin, etoposide, and vincristine) in a highly synergistic manner. In addition, LY294002 cooperates with TRAIL or doxorubicin to suppress colony formation, thus also showing a strong effect on long-term survival. Similarly, genetic knockdown of PI3K subunits p110alpha and/or p110beta by RNA interference (RNAi) primes glioblastoma cells for TRAIL- or doxorubicin-mediated apoptosis. In contrast to PI3K inhibition, pharmacologic or genetic blockade of mTOR by RAD001 (everolimus), rapamycin, or RNAi fails to enhance TRAIL- or doxorubicin-induced apoptosis. Analysis of apoptosis pathways reveals that PI3K inhibition acts in concert with TRAIL or doxorubicin to trigger mitochondrial membrane permeabilization, caspase activation, and caspase-dependent apoptosis, which are abolished by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Most importantly, PI3K inhibition by LY294002 sensitizes primary cultured glioblastoma cells obtained from surgical specimens to TRAIL- or chemotherapy-induced cell death. By showing that PI3K inhibition broadly primes glioblastoma cells for apoptosis, our findings provide the rationale for using PI3K inhibitors in combination regimens to enhance TRAIL- or chemotherapy-induced apoptosis in glioblastoma.


Cancer Research | 2005

Sensitization for γ-Irradiation–Induced Apoptosis by Second Mitochondria-Derived Activator of Caspase

Stavros Giagkousiklidis; Meike Vogler; Mike-Andrew Westhoff; Hubert Kasperczyk; Klaus-Michael Debatin; Simone Fulda

Resistance to current treatment regimens, such as radiation therapy, remains a major concern in oncology and may be caused by defects in apoptosis programs. Because inhibitor of apoptosis proteins (IAPs), which are expressed at high levels in many tumors, block apoptosis at the core of the apoptotic machinery by inhibiting caspases, therapeutic modulation of IAPs could target a key control point in resistance. Here, we report for the first time that full-length or mature second mitochondria-derived activator of caspase (Smac), an inhibitor of IAPs, significantly enhanced gamma-irradiation-induced apoptosis and reduced clonogenic survival in neuroblastoma, glioblastoma, or pancreatic carcinoma cells. Notably, Smac had no effect on DNA damage/DNA repair, activation of nuclear factor-kappaB, up-regulation of p53 and p21 proteins, or cell cycle arrest following gamma-irradiation, indicating that Smac did not alter the initial damage and/or cellular stress response. Smac enhanced activation of caspase-2, caspase-3, caspase-8, and caspase-9, loss of mitochondrial membrane potential, and cytochrome c release on gamma-irradiation. Inhibition of caspases also blocked gamma-irradiation-induced mitochondrial perturbations, indicating that Smac facilitated caspase activation, which in turn triggered a mitochondrial amplification loop. Interestingly, mitochondrial perturbations were completely blocked by the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone or the relatively selective caspase-2 inhibitor N-benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-fluoromethylketone, whereas caspase-8 or caspase-3 inhibitors only inhibited the increased drop of mitochondrial membrane potential provided by Smac, suggesting that caspase-2 was acting upstream of mitochondria after gamma-irradiation. In conclusion, our findings provide evidence that targeting IAPs (e.g., by Smac agonists) is a promising strategy to enhance radiosensitivity in human cancers.


PLOS ONE | 2013

Sequential Dosing in Chemosensitization: Targeting the PI3K/Akt/mTOR Pathway in Neuroblastoma

Mike-Andrew Westhoff; Najmeh Faham; Daniela Marx; Lisa Nonnenmacher; Claudia Jennewein; Stefanie Enzenmüller; Patrick Gonzalez; Simone Fulda; Klaus-Michael Debatin

Breaking resistance to chemotherapy is a major goal of combination therapy in many tumors, including advanced neuroblastoma. We recently demonstrated that increased activity of the PI3K/Akt network is associated with poor prognosis, thus providing an ideal target for chemosensitization. Here we show that targeted therapy using the PI3K/mTOR inhibitor NVP-BEZ235 significantly enhances doxorubicin-induced apoptosis in neuroblastoma cells. Importantly, this increase in apoptosis was dependent on scheduling: while pretreatment with the inhibitor reduced doxorubicin-induced apoptosis, the sensitizing effect in co-treatment could further be increased by delayed addition of the inhibitor post chemotherapy. Desensitization for doxorubicin-induced apoptosis seemed to be mediated by a combination of cell cycle-arrest and autophagy induction, whereas sensitization was found to occur at the level of mitochondria within one hour of NVP-BEZ235 posttreatment, leading to a rapid loss of mitochondrial membrane potential with subsequent cytochrome c release and caspase-3 activation. Within the relevant time span we observed marked alterations in a ∼30 kDa protein associated with mitochondrial proteins and identified it as VDAC1/Porin protein, an integral part of the mitochondrial permeability transition pore complex. VDAC1 is negatively regulated by the PI3K/Akt pathway via GSK3β and inhibition of GSK3β, which is activated when Akt is blocked, ablated the sensitizing effect of NVP-BEZ235 posttreatment. Our findings show that cancer cells can be sensitized for chemotherapy induced cell death – at least in part – by NVP-BEZ235-mediated modulation of VDAC1. More generally, we show data that suggest that sequential dosing, in particular when multiple inhibitors of a single pathway are used in the optimal sequence, has important implications for the general design of combination therapies involving molecular targeted approaches towards the PI3K/Akt/mTOR signaling network.


Molecular Cancer Research | 2013

Inhibition of NF-κB Signaling Ablates the Invasive Phenotype of Glioblastoma

Mike-Andrew Westhoff; Shaoxia Zhou; Lisa Nonnenmacher; Georg Karpel-Massler; Claudia Jennewein; Matthias Schneider; Marc-Eric Halatsch; Neil O. Carragher; Bernd Baumann; Alexander Krause; Thomas Simmet; Max G. Bachem; Christian Rainer Wirtz; Klaus-Michael Debatin

Glioblastoma multiforme, the most common primary brain tumor, is highly refractory to therapy, mainly due to its ability to form micrometastases, which are small clusters or individual cells that rapidly transverse the brain and make full surgical resection impossible. Here, it is demonstrated that the invasive phenotype of glioblastoma multiforme is orchestrated by the transcription factor NF-κB which, via metalloproteinases (MMP), regulates fibronectin processing. Both, cell lines and tumor stem cells from primary glioblastoma multiforme, secrete high levels of fibronectin which when cleaved by MMPs forms an extracellular substrate. Subsequently, forming and interacting with their own microenvironment, glioblastoma multiforme cells are licensed to invade their surroundings. Mechanistic study revealed that NF-κB inhibition, either genetically or pharmacologically, by treatment with Disulfiram, significantly abolished the invasive phenotype in the chick chorioallantoic membrane assay. Furthermore, having delineated the underlying molecular mechanism of glioblastoma multiforme invasion, the potential of a disulfiram-based therapy was revealed in a highly invasive orthotrophic glioblastoma multiforme mouse model. Implications: This study defines a novel therapeutic approach that inhibits micrometastases invasion and reverts lethal glioblastoma into a less aggressive disease. Mol Cancer Res; 11(12); 1611–23. ©2013 AACR.


Molecular and cellular therapies | 2014

A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy

Mike-Andrew Westhoff; Georg Karpel-Massler; Oliver Brühl; Stefanie Enzenmüller; Katia La Ferla-Brühl; Markus D. Siegelin; Lisa Nonnenmacher; Klaus-Michael Debatin

Members of the PI3K/Akt/mTor signaling cascade are among the most frequently altered proteins in cancer, yet the therapeutic application of pharmacological inhibitors of this signaling network, either as monotherapy or in combination therapy (CT) has so far not been particularly successful. In this review we will focus on the role of PI3K/Akt/mTOR in two distinct tumors, Glioblastoma multiforme (GBM), an adult brain tumor which frequently exhibits PTEN inactivation, and Neuroblastoma (NB), a childhood malignancy that affects the central nervous system and does not harbor any classic alterations in PI3K/Akt signaling. We will argue that inhibitors of PI3K/Akt signaling can be components for potentially promising new CTs in both tumor entities, but further understanding of the signal cascade’s complexity is essential for successful implementation of these CTs. Importantly, failure to do this might lead to severe adverse effects, such as treatment failure and enhanced therapy resistance.


Antioxidants & Redox Signaling | 2014

Phosphoinositide 3-Kinases Upregulate System xc− via Eukaryotic Initiation Factor 2α and Activating Transcription Factor 4 – A Pathway Active in Glioblastomas and Epilepsy

Jan Lewerenz; Paul Baxter; Rebecca Kassubek; Philipp Albrecht; Joeri Van Liefferinge; Mike-Andrew Westhoff; Marc-Eric Halatsch; Georg Karpel-Massler; Paul J. Meakin; John D. Hayes; Eleonora Aronica; Ilse Smolders; Albert C. Ludolph; Axel Methner; Marcus Conrad; Ann Massie; Giles E. Hardingham; Pamela Maher

AIMS Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc(-) imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc(-) and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. RESULTS PI3Ks induce system xc(-) through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. INNOVATION Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc(-). Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. CONCLUSION PI3K-regulated system xc(-) activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate.


Anti-cancer Agents in Medicinal Chemistry | 2014

Artesunate enhances the antiproliferative effect of temozolomide on U87MG and A172 glioblastoma cell lines.

Georg Karpel-Massler; Mike-Andrew Westhoff; Richard E. Kast; Annika Dwucet; Lisa Nonnenmacher; C. Rainer Wirtz; Klaus-Michael Debatin; Marc-Eric Halatsch

As chemotherapy with temozolomide is far from providing satisfactory clinical outcomes for patients with glioblastoma, more efficient drugs and drug combinations are urgently needed. The anti-malarial artesunate was previously shown to exert a profound cytotoxic effect on various tumor cell lines including those derived from glioblastoma. In the current study, we sought to examine the antiproliferative effect of a combination of temozolomide and artesunate on two different established human glioblastoma cell lines. The IC50 and IC25 were determined for temozolomide and artesunate in U87MG and A172 glioblastoma cell lines after 144 h of continuous drug exposure. The antiproliferative effect of combining both agents at IC50/IC50 and IC25/IC25 was determined by a cell viability assay. Moreover, necrosis and apoptosis were analyzed by annexin V/PI staining and flow cytometric analysis. In addition, cytostatic effects were examined by carboxyfluorescein diacetate succinimidyl ester staining and subsequent flow cytometry. In both glioblastoma cell lines, artesunate was found to enhance the antiproliferative effect exerted by temozolomide. Moreover, artesunate acted in concert with temozolomide in terms of cytostatic and necrotizing effects. These observations suggest that a combination of artesunate and temozolomide might result in increased cytotoxicity in glioblastoma.


International Journal of Cancer | 2015

RIST: A potent new combination therapy for glioblastoma

Lisa Nonnenmacher; Mike-Andrew Westhoff; Simone Fulda; Georg Karpel-Massler; Marc-Eric Halatsch; Jens Engelke; Thomas Simmet; Selim Corbacioglu; Klaus-Michael Debatin

Glioblastoma is a highly aggressive, common brain tumor with poor prognosis. Therefore, this study examines a new therapeutic approach targeting oncogenic and survival pathways combined with common chemotherapeutics. The RIST (rapamycin, irinotecan, sunitinib, temozolomide) and the variant aRIST (alternative to rapamycin, GDC‐0941) therapy delineate growth inhibiting effects in established glioblastoma cell lines and primary cultured patient material. These combinations significantly decreased cell numbers and viability compared to inhibitors and chemotherapeutics alone with aRIST being superior to RIST. Notably, RIST/aRIST appeared to be apoptogenic evoked by reduction of anti‐apoptotic protein levels of XIAP and BCL‐2, with concomitant up‐regulation of pro‐apoptotic protein levels of p53 and BAX. The treatment success of RIST therapy was confirmed in an orthotopic mouse model. This combination treatment revealed significantly prolonged survival time and drastically reduced the tumor burden by acting anti‐proliferative and pro‐apoptotic. Surprisingly, in vivo, aRIST only marginally extended survival time with tumor volumes comparable to controls. We found that aRIST down‐regulates the microvessel density suggesting an insufficient distribution of chemotherapy. Further, alterations in different molecular modes of action in vivo than in vitro suggest, that in vivo RIST therapy may mimic the superior aRIST protocols pro‐apoptotic inhibition of pAKT in vitro. Of note, all substances were administered in therapeutically relevant low doses with no adverse side effects observed. We also provide evidence of the potential benefits of the RIST therapy in a clinical setting. Our data indicates RIST therapy as a novel treatment strategy for glioblastoma achieving significant anti‐tumorigenic activity avoiding high‐dose chemotherapy.


International Journal of Molecular Sciences | 2014

Killing Me Softly—Future Challenges in Apoptosis Research

Mike-Andrew Westhoff; Oliver Brühl; Lisa Nonnenmacher; Georg Karpel-Massler; Klaus-Michael Debatin

The induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack. Second, the complexity of combination therapy is elucidated using the PI3-K-mediated signaling network as a specific example. Here we show that the current clinical approach to sensitize malignancies to apoptosis by maximal, prolonged inhibition of so-called survival pathways can actually be counter productive. Third, we propose that under certain conditions which will need to be clearly defined in future, chronification of a tumor might be preferable to the attempt at a cure. Finally, we discuss further problems with utilizing apoptosis induction in cancer therapy and propose a novel potential therapeutic approach that combines the previously discussed features.


PLOS ONE | 2014

PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

Georg Karpel-Massler; Fresia Pareja; Pascaline Aimé; Chang Shu; Lily S. Chau; Mike-Andrew Westhoff; Marc-Eric Halatsch; John F. Crary; Peter Canoll; Markus D. Siegelin

Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM.

Collaboration


Dive into the Mike-Andrew Westhoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus D. Siegelin

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Shu

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge