Mike D. Picker
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mike D. Picker.
Biodiversity and Conservation | 1996
Mike D. Picker; Michael J. Samways
A total of 322 records were available from the literature on faunal taxa endemic to the Cape Peninsula, South Africa. Excluding possible pseudoendemics, dubious records and many invertebrate groups for which little or no information exists, these records represent 112 species (1 vertebrate and the rest invertebrates) in 47 families. This number excludes many other potential endemics having distributions that extend just off the Peninsula. When mapped according to a 590 1 km×1 km grid, these endemics were clustered in several, largely montane nodes and palaeogenic (palaeoclimatically stable) zones typically located in upper reach forest streams, riverine forest and caves (the latter supported 14 endemics). Endemics were over-represented on steep slopes. For many taxa, a very high percentage of the Peninsula representatives were endemics. There were more plant than animal endemics per 1 km2 cell, although in total there were more animal than plant endemics. A significant correlation existed between the distribution of plant and animal endemics on the Peninsula, and especially on Table Mountain. The relationship, however, appears not to be causal, and is possibly related to parallel responses to historical isolation and topography. As the endemic fauna is mostly relictual, conservation of umbrella plant communities and the sandstone caves is essential. This may avert further extinction (some invertebrate endemics are likely to be extinct at this stage). Others have suffered declines in population numbers through development, invasion of alien vegetation, and possibly through predetion by the introduced Argentine ant.
Systematic Entomology | 2012
Marie Djernæs; Klaus-Dieter Klass; Mike D. Picker; Jakob Damgaard
We addressed the phylogeny of cockroaches using DNA sequence data from a broad taxon sample of Dictyoptera and other non‐endopterygotan insect orders. We paid special attention to several taxa in which relationships are controversial, or where no molecular evidence has been used previously: Nocticolidae, a family of small, often cave‐dwelling cockroaches, has been suggested to be the sister group of the predaceous Mantodea or of the cockroach family Polyphagidae; Lamproblatta, traditionally placed in Blattidae, has recently been given family status and placed as sister to Polyphagidae; and Saltoblattella montistabularis Bohn, Picker, Klass & Colville, a jumping cockroach, which has not yet been included in any phylogenetic studies. We used mitochondrial (COI + COII and 16S) and nuclear (18S and 28S) genes, and analysed the data using Bayesian inference (BI) and maximum likelihood (ML). Nocticolidae was recovered as sister to Polyphagidae. Lamproblatta was recovered as sister to Blattidae, consistent with the traditional placement (not based on phylogenetic analysis). However, because of the limited support for this relationship and conflict with earlier morphology‐based phylogenetic hypotheses, we retain Lamproblattidae. S. montistabularis was consistently placed as sister to Ectobius sylvestris Poda (Blaberoidea: Ectobinae), indicating that the saltatorial hindlegs of this genus are a relatively recent adaptation. Isoptera was placed within Blattodea as sister to Cryptocercidae. Nocticolidae + Polyphagidae was sister to Isoptera + Cryptocercidae, and Blaberoidea was sister to the remaining Blattodea.
Annals of Botany | 2009
Jeff Ollerton; Siro Masinde; Ulrich Meve; Mike D. Picker; Andrew Whittington
BACKGROUND AND AIMS Ceropegia (Apocynaceae subfamily Asclepiadoideae) is a large, Old World genus of >180 species, all of which possess distinctive flask-shaped flowers that temporarily trap pollinators. The taxonomic diversity of pollinators, biogeographic and phylogenetic patterns of pollinator exploitation, and the level of specificity of interactions were assessed in order to begin to understand the role of pollinators in promoting diversification within the genus. METHODS Flower visitor and pollinator data for approx. 60 Ceropegia taxa were analysed with reference to the main centres of diversity of the genus and to a cpDNA-nrDNA molecular phylogeny of the genus. KEY RESULTS Ceropegia spp. interact with flower-visiting Diptera from at least 26 genera in 20 families, of which 11 genera and 11 families are pollinators. Size range of flies was 0.5-4.0 mm and approx. 94 % were females. Ceropegia from particular regions do not use specific fly genera or families, though Arabian Peninsula species are pollinated by a wider range of Diptera families than those in other regions. The basal-most clade interacts with the highest diversity of Diptera families and genera, largely due to one hyper-generalist taxon, C. aristolochioides subsp. deflersiana. Species in the more-derived clades interact with a smaller diversity of Diptera. Approximately 60 % of taxa are so far recorded as interacting with only a single genus of pollinators, the remaining 40 % being less conservative in their interactions. Ceropegia spp. can therefore be ecological specialists or generalists. CONCLUSIONS The genus Ceropegia has largely radiated without evolutionary shifts in pollinator functional specialization, maintaining its interactions with small Diptera. Intriguing biogeographic and phylogenetic patterns may reflect processes of regional dispersal, diversification and subsequent specialization onto a narrower range of pollinators, though some of the findings may be caused by inconsistent sampling. Comparisons are made with other plant genera in the Aristolochiaceae and Araceae that have evolved flask-shaped flowers that trap female flies seeking oviposition sites.
Molecular Phylogenetics and Evolution | 2008
Jakob Damgaard; Klaus-Dieter Klass; Mike D. Picker; Gerda Buder
We examined the phylogeny of Mantophasmatodea from southern Africa (South Africa, Namibia) using approx. 1300 bp of mitochondrial DNA sequence data from the genes encoding COI and 16S. The taxon sample comprised multiple specimens from eight described species (Namaquaphasma ookiepense, Austrophasma rawsonvillense, A. caledonense, A. gansbaaiense, Lobatophasma redelinghuysense, Hemilobophasma montaguense, Karoophasma botterkloofense, K. biedouwense) and four undescribed species of Austrophasmatidae; three specimens of Sclerophasma paresisense (Mantophasmatidae); and two specimens of Praedatophasma maraisi and one of Tyrannophasma gladiator (not yet convincingly assigned to any family). For outgroup comparison a broad selection from hemimetabolous insect orders was included. Equally weighted parsimony analyses of the combined COI+16S data sets with gaps in 16S scored as a fifth character state supported Austrophasmatidae and all species and genera of Mantophasmatodea as being monophyletic. Most species were highly supported with 98-100% bootstrap/7-39 Bremer support (BS), but K. biedouwense had moderate support (87/4) and A. caledonense low support (70/1). Mantophasmatodea, Austrophasmatidae, and a clade Tyrannophasma gladiator+Praedatophasma maraisi were all strongly supported (99-100/12-25), while relationships among the two latter clades and Mantophasmatidae remain ambiguous. Concerning the relationships among genera of Austrophasmatidae, support values are moderately high for some nodes, but not significant for others. We additionally calculated the partitioned BS values of COI and 16S for all nodes in the strict consensus of the combined tree. COI and 16S are highly congruent at the species level as well as at the base of Mantophasmatodea, but congruence is poor for most intergeneric relationships. In forthcoming studies, deeper relationships in the order should be additionally explored by nuclear genes, such as 18S and 28S, for a reduced sample of specimens.
Biodiversity and Conservation | 2000
Norma J. Sharratt; Mike D. Picker; Michael J. Samways
The temperate sandstone caves of the Cape Peninsula, South Africa, support 85 cavernicolous invertebrate species across six phyla. Six of these, including two blind and depigmented species of insects (Dermaptera) and spiders (Araneae: Hahniidae) were previously unknown. Twenty-one species are endemic to the Peninsula. Thirteen of these are presumed troglobitic Gondwanan relicts, including highly specialized, phylogenetically unique, rare species with restricted distributions and specialized habitat requirements. According to the criteria listed in the IUCN Red List Categories (1994), the onychophoran Peripatopsis alba and crustacean Spelaeogriphus lepidops should be considered Critically Endangered, their extents of occurrence being less than 100 km2. Furthermore, Data Deficient species, such as the freshwater shrimps Protojanira leleupi and Paramelita barnardi, the spider Hahnia sp.nov., the earwig Dermaptera sp.nov. and the centipede Cryptops stupendus, are likely to be additional Critically Endangered species on account of their exceptional rarity or restricted distributions. The remaining endemic cavernicoles are considered Endangered on account of their limited distributions (extent of occurrence <5000 km2). Therefore, conservation considerations are clearly an urgent priority and appropriate recommendations are provided. Management-orientated research, long-term population monitoring and the conservation of pseudokarst areas, are urgent requirements for the conservation of these rare and threatened evolutionary relicts in their isolated island-like habitats.
Arthropod Structure & Development | 2010
Monika J. B. Eberhard; D. Lang; Brian D. Metscher; Günther Pass; Mike D. Picker; Harald Wolf
Individuals of the insect order Mantophasmatodea use species-specific substrate vibration signals for mate recognition and location. In insects, substrate vibration is detected by mechanoreceptors in the legs, the scolopidial organs. In this study we give a first detailed overview of the structure, sensory sensitivity, and function of the leg scolopidial organs in two species of Mantophasmatodea and discuss their significance for vibrational communication. The structure and number of the organs are documented using light microscopy, SEM, and x-ray microtomography. Five scolopidial organs were found in each leg of male and female Mantophasmatodea: a femoral chordotonal organ, subgenual organ, tibial distal organ, tibio-tarsal scolopidial organ, and tarso-pretarsal scolopidial organ. The femoral chordotonal organ, consisting of two separate scoloparia, corresponds anatomically to the organ of a stonefly (Nemoura variegata) while the subgenual organ complex resembles the very sensitive organs of the cockroach Periplatena americana (Blattodea). Extracellular recordings from the leg nerve revealed that the leg scolopidial organs of Mantophasmatodea are very sensitive vibration receptors, especially for low-frequency vibrations. The dominant frequencies of the vibratory communication signals of Mantophasmatodea, acquired from an individual drumming on eight different substrates, fall in the frequency range where the scolopidial organs are most sensitive.
Biodiversity and Conservation | 1996
T. H. Trinder-Smith; Amanda T. Lombard; Mike D. Picker
The Cape Peninsula, a landscape of profound scenic beauty, is also botanically exceptionally species-rich and has high concentrations of both endemic and threatened plant species. Alien invasive trees, urban expansion and growing tourism are impacting increasingly on the landscape and biota. Three reserve scenarios were modelled, the primary objective being to maximize the conservation of biodiversity in a manner which takes both cost and efficiency into account. A comprehensive plant species database, an endemic animali species database, a vegetation type database, land-tenure and land-use data were used in this process. The resolution of all databases was by 1 km cells. The first scenario investigated the effectiveness of the existing reserve system in conserving the Peninsulas biodiversity. The second assessed the benefit of adding all publicly owned and to the existing reserves. In scenario three, a reserve-selection algorithm was applied to conserve those plant species outside existing reserves at least once. Where endemic animal species, and areas with high concentrations of threatened and endemic plant species were not adequately conserved, extra cells were added for their inclusion. Finally, one cell was added to cater for one inadequately conserved vegetation type. Fifty-one cells were needed to satisfy the requirements stipulated for scenario three. Analyses showed that 22% of plant species have all their records within existing reserves. Adding all public land improves the status to 43% with 97% having >50% of their records included in reserves. In scenario three, these figures are 32 and 87% respectively. In terms of animal species, four species are unconserved in scenario one, two in scenario two, and all species are conserved in scenario three. We conclude that scenarios two (including all public areas) and three (iterative selection to conserve each species once) provide practicable options for conserving the Peninsulas remaining biodiversity.
Biodiversity and Conservation | 2002
Jonathan F. Colville; Mike D. Picker; Richard M. Cowling
Species turnover of monkey beetle (Scarabaeidae: Hopliini) assemblages along disturbance and environmental gradients was examined at three sites within the arid, winter rainfall Namaqualand region of the succulent Karoo, South Africa. At each site two study plots with comparable vegetation and soils but contrasting management (grazing) histories were chosen, the disturbed sites having fewer perennial shrubs and generally more annuals and bare ground. Beetles collected using coloured pan-traps showed a consistently higher abundance in disturbed sites. Lepithrix, Denticnema and Heterochelus had higher numbers in disturbed plots, while Peritrichia numbers were lower in disturbed areas. Measures of species richness and diversity were consistently higher in the undisturbed sites. Distinctive assemblages of monkey beetles and plants occurred at each site. A high compositional turnover (β diversity) was recorded for both monkey beetles and plants along a rainfall gradient; between-site β diversity values ranged from 0.7 to 0.8 (out of a maximum of 1.0). Species turnover of beetles was higher between the disturbed sites along the environmental gradient than the corresponding undisturbed sites. The high monkey beetle species turnover is probably linked to the high plant species turnover, a distinctive feature of succulent Karoo landscapes. Monkey beetles are useful indicators of overgrazing disturbance in Namaqualand, as their pollinator guilds are apparently disrupted by overgrazing. A shift away from perennial and bulb pollinator guilds towards those favouring weedy annuals was observed in disturbed areas. The consequences to ecosystem processes due to the effects of disturbance on monkey beetle communities and the role of monkey beetles as indicators of disturbance is discussed, as well as the implications of disturbance on monkey beetle pollination guilds.
The Journal of Experimental Biology | 2010
Malcolm Burrows; Mike D. Picker
SUMMARY Pygmy mole crickets live in burrows at the edge of water and jump powerfully to avoid predators such as the larvae and adults of tiger beetles that inhabit the same microhabitat. Adults are 5–6 mm long and weigh 8 mg. The hind legs are dominated by enormous femora containing the jumping muscles and are 131% longer than the body. The ratio of leg lengths is: 1:2.1:4.5 (front:middle:hind, respectively). The hind tarsi are reduced and their role is supplanted by two pairs of tibial spurs that can rotate through 180 deg. During horizontal walking the hind legs are normally held off the ground. Jumps are propelled by extension of the hind tibiae about the femora at angular velocities of 68,000 deg s−1 in 2.2 ms, as revealed by images captured at rates of 5000 s−1. The two hind legs usually move together but can move asynchronously, and many jumps are propelled by just one hind leg. The take-off angle is steep and once airborne the body rotates backwards about its transverse axis (pitch) at rates of 100 Hz or higher. The take-off velocity, used to define the best jumps, can reach 5.4 m s−1, propelling the insect to heights of 700 mm and distances of 1420 mm with an acceleration of 306 g. The head and pronotum are jerked rapidly as the body is accelerated. Jumping on average uses 116 μJ of energy, requires a power output of 50 mW and exerts a force of 20 mN. In jumps powered by one hind leg the figures are about 40% less.
Biological Conservation | 1989
Mike D. Picker; Atherton L. de Villiers
The distribution pattern and habitat requirements of the endangered frog Xenopus gilli were examined to assess its future survival prospects. All localities (sensu discrete populations) are given, and new records have increased the previously limited range by 150 km. Extinction at 60% of the original localities has occurred in the last 50 years. Probable reasons for population decline are given. X. gilli is shown to be very intolerant of habitat disturbances, which alter the nature of the blackwaters to which it is restricted. In contrast the sympatric X. laevis shows a preference for disturbed, permanent waterbodies, and its spread has been facilitated by the presence of man-made impoundments. It inhabits both clear and blackwater, and hydridises with all known local populations of X. gilli. Such hydridisation poses a major threat to the future genetic integrity of the X. gilli genome. Recommendations for the future conservation of X. gilli are given, with population estimates for populations within a nature reserve.