Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mike Dodds is active.

Publication


Featured researches published by Mike Dodds.


european conference on object oriented programming | 2010

Concurrent abstract predicates

Thomas Dinsdale-Young; Mike Dodds; Philippa Gardner; Matthew J. Parkinson; Viktor Vafeiadis

Abstraction is key to understanding and reasoning about large computer systems. Abstraction is simple to achieve if the relevant data structures are disjoint, but rather difficult when they are partially shared, as is often the case for concurrent modules. We present a program logic for reasoning abstractly about data structures that provides a fiction of disjointness and permits compositional reasoning. The internal details of a module are completely hidden from the client by concurrent abstract predicates. We reason about a modules implementation using separation logic with permissions, and provide abstract specifications for use by client programs using concurrent abstract predicates. We illustrate our abstract reasoning by building two implementations of a lock module on top of hardware instructions, and two implementations of a concurrent set module on top of the lock module.


symposium on principles of programming languages | 2013

Library abstraction for C/C++ concurrency

Mark Batty; Mike Dodds; Alexey Gotsman

When constructing complex concurrent systems, abstraction is vital: programmers should be able to reason about concurrent libraries in terms of abstract specifications that hide the implementation details. Relaxed memory models present substantial challenges in this respect, as libraries need not provide sequentially consistent abstractions: to avoid unnecessary synchronisation, they may allow clients to observe relaxed memory effects, and library specifications must capture these. In this paper, we propose a criterion for sound library abstraction in the new C11 and C++11 memory model, generalising the standard sequentially consistent notion of linearizability. We prove that our criterion soundly captures all client-library interactions, both through call and return values, and through the subtle synchronisation effects arising from the memory model. To illustrate our approach, we verify implementations against specifications for the lock-free Treiber stack and a producer-consumer queue. Ours is the first approach to compositional reasoning for concurrent C11/C++11 programs.


symposium on principles of programming languages | 2015

A Scalable, Correct Time-Stamped Stack

Mike Dodds; Andreas Haas; Christoph M. Kirsch

Concurrent data-structures, such as stacks, queues, and deques, often implicitly enforce a total order over elements in their underlying memory layout. However, much of this order is unnecessary: linearizability only requires that elements are ordered if the insert methods ran in sequence. We propose a new approach which uses timestamping to avoid unnecessary ordering. Pairs of elements can be left unordered if their associated insert operations ran concurrently, and order imposed as necessary at the eventual removal. We realise our approach in a new non-blocking data-structure, the TS (timestamped) stack. Using the same approach, we can define corresponding queue and deque data-structures. In experiments on x86, the TS stack outperforms and outscales all its competitors -- for example, it outperforms the elimination-backoff stack by factor of two. In our approach, more concurrency translates into less ordering, giving less-contended removal and thus higher performance and scalability. Despite this, the TS stack is linearizable with respect to stack semantics. The weak internal ordering in the TS stack presents a challenge when establishing linearizability: standard techniques such as linearization points work well when there exists a total internal order. We present a new stack theorem, mechanised in Isabelle, which characterises the orderings sufficient to establish stack semantics. By applying our stack theorem, we show that the TS stack is indeed linearizable. Our theorem constitutes a new, generic proof technique for concurrent stacks, and it paves the way for future weakly ordered data-structure designs.


symposium on principles of programming languages | 2011

Modular reasoning for deterministic parallelism

Mike Dodds; Suresh Jagannathan; Matthew J. Parkinson

Weaving a concurrency control protocol into a program is difficult and error-prone. One way to alleviate this burden is deterministic parallelism. In this well-studied approach to parallelisation, a sequential program is annotated with sections that can execute concurrently, with automatically injected control constructs used to ensure observable behaviour consistent with the original program. This paper examines the formal specification and verification of these constructs. Our high-level specification defines the conditions necessary for correct execution; these conditions reflect program dependencies necessary to ensure deterministic behaviour. We connect the high-level specification used by clients of the library with the low-level library implementation, to prove that a clients requirements for determinism are enforced. Significantly, we can reason about program and library correctness without breaking abstraction boundaries. To achieve this, we use concurrent abstract predicates, based on separation logic, to encapsulate racy behaviour in the librarys implementation. To allow generic specifications of libraries that can be instantiated by client programs, we extend the logic with higher-order parameters and quantification. We show that our high-level specification abstracts the details of deterministic parallelism by verifying two different low-level implementations of the library.


conference on object-oriented programming systems, languages, and applications | 2011

A simple abstraction for complex concurrent indexes

Pedro da Rocha Pinto; Thomas Dinsdale-Young; Mike Dodds; Philippa Gardner; Mark J. Wheelhouse

Indexes are ubiquitous. Examples include associative arrays, dictionaries, maps and hashes used in applications such as databases, file systems and dynamic languages. Abstractly, a sequential index can be viewed as a partial function from keys to values. Values can be queried by their keys, and the index can be mutated by adding or removing mappings. Whilst appealingly simple, this abstract specification is insufficient for reasoning about indexes accessed concurrently. We present an abstract specification for concurrent indexes. We verify several representative concurrent client applications using our specification, demonstrating that clients can reason abstractly without having to consider specific underlying implementations. Our specification would, however, mean nothing if it were not satisfied by standard implementations of concurrent indexes. We verify that our specification is satisfied by algorithms based on linked lists, hash tables and B-Link trees. The complexity of these algorithms, in particular the B-Link tree algorithm, can be completely hidden from the clients view by our abstract specification.


international conference on graph transformation | 2006

Graph transformation in constant time

Mike Dodds

We present conditions under which graph transformation rules can be applied in time independent of the size of the input graph: graphs must contain a unique root label, nodes in the left-hand sides of rules must be reachable from the root, and nodes must have a bounded outdegree. We establish a constant upper bound for the time needed to construct all graphs resulting from an application of a fixed rule to an input graph. We also give an improved upper bound under the stronger condition that all edges outgoing from a node must have distinct labels. Then this result is applied to identify a class of graph reduction systems that define graph languages with a linear membership test. In a case study we prove that the (non-context-free) language of balanced binary trees with backpointers belongs to this class.


ACM Transactions on Programming Languages and Systems | 2013

Proof-Directed Parallelization Synthesis by Separation Logic

Matko Botincan; Mike Dodds; Suresh Jagannathan

We present an analysis which takes as its input a sequential program, augmented with annotations indicating potential parallelization opportunities, and a sequential proof, written in separation logic, and produces a correctly synchronized parallelized program and proof of that program. Unlike previous work, ours is not a simple independence analysis that admits parallelization only when threads do not interfere; rather, we insert synchronization to preserve dependencies in the sequential program that might be violated by a naïve translation. Separation logic allows us to parallelize fine-grained patterns of resource usage, moving beyond straightforward points-to analysis. The sequential proof need only represent shape properties, meaning we can handle complex algorithms without verifying every aspect of their behavior. Our analysis works by using the sequential proof to discover dependencies between different parts of the program. It leverages these discovered dependencies to guide the insertion of synchronization primitives into the parallelized program, and to ensure that the resulting parallelized program satisfies the same specification as the original sequential program, and exhibits the same sequential behavior. Our analysis is built using frame inference and abduction, two techniques supported by an increasing number of separation logic tools.


Electronic Notes in Theoretical Computer Science | 2006

Extending C for Checking Shape Safety

Mike Dodds

The project Safe Pointers by Graph Transformation at the University of York has developed a method for specifying the shape of pointer-data structures by graph reduction, and a static checking algorithm for proving the shape safety of graph transformation rules modelling operations on pointer structures. In this paper, we outline how to apply this approach to the C programming language. We extend ANSI C with so-called transformers which model graph transformation rules, and with shape specifications for pointer structures. For the resulting language C-GRS, we present both a translation to C and and an abstraction to graph transformation. Our main result is that the abstraction of transformers to graph transformation rules is correct in that the C code implementing transformers is compatible with the semantics of graph transformation.


european symposium on programming | 2013

Ribbon proofs for separation logic

John Wickerson; Mike Dodds; Matthew J. Parkinson

We present ribbon proofs, a diagrammatic system for proving program correctness based on separation logic. Ribbon proofs emphasise the structure of a proof, so are intelligible and pedagogical. Because they contain less redundancy than proof outlines, and allow each proof step to be checked locally, they may be more scalable. Where proof outlines are cumbersome to modify, ribbon proofs can be visually manoeuvred to yield proofs of variant programs. This paper introduces the ribbon proof system, proves its soundness and completeness, and outlines a prototype tool for validating the diagrams in Isabelle.


symposium on principles of programming languages | 2012

Resource-sensitive synchronization inference by abduction

Matko Botincan; Mike Dodds; Suresh Jagannathan

We present an analysis which takes as its input a sequential program, augmented with annotations indicating potential parallelization opportunities, and a sequential proof, written in separation logic, and produces a correctly-synchronized parallelized program and proof of that program. Unlike previous work, ours is not an independence analysis; we insert synchronization constructs to preserve relevant dependencies found in the sequential program that may otherwise be violated by a naive translation. Separation logic allows us to parallelize fine-grained patterns of resource-usage, moving beyond straightforward points-to analysis. Our analysis works by using the sequential proof to discover dependencies between different parts of the program. It leverages these discovered dependencies to guide the insertion of synchronization primitives into the parallelized program, and to ensure that the resulting parallelized program satisfies the same specification as the original sequential program, and exhibits the same sequential behaviour. Our analysis is built using frame inference and abduction, two techniques supported by an increasing number of separation logic tools.

Collaboration


Dive into the Mike Dodds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Batty

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge