Mikel Valle
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikel Valle.
Cell | 2003
Mikel Valle; Andrey Zavialov; Jayati Sengupta; Urmila Rawat; Måns Ehrenberg; Joachim Frank
During the ribosomal translocation, the binding of elongation factor G (EF-G) to the pretranslocational ribosome leads to a ratchet-like rotation of the 30S subunit relative to the 50S subunit in the direction of the mRNA movement. By means of cryo-electron microscopy we observe that this rotation is accompanied by a 20 A movement of the L1 stalk of the 50S subunit, implying that this region is involved in the translocation of deacylated tRNAs from the P to the E site. These ribosomal motions can occur only when the P-site tRNA is deacylated. Prior to peptidyl-transfer to the A-site tRNA or peptide removal, the presence of the charged P-site tRNA locks the ribosome and prohibits both of these motions.
Nature Structural & Molecular Biology | 2003
Mikel Valle; Andrey Zavialov; Wen Li; Scott M. Stagg; Jayati Sengupta; Rikke Nielsen; Poul Nissen; Stephen C. Harvey; Måns Ehrenberg; Joachim Frank
Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of ∼9 Å, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli, the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.
Nature Methods | 2007
Sjors H.W. Scheres; Haixiao Gao; Mikel Valle; Gabor T. Herman; Paul P. B. Eggermont; Joachim Frank; J.M. Carazo
Although three-dimensional electron microscopy (3D-EM) permits structural characterization of macromolecular assemblies in distinct functional states, the inability to classify projections from structurally heterogeneous samples has severely limited its application. We present a maximum likelihood–based classification method that does not depend on prior knowledge about the structural variability, and demonstrate its effectiveness for two macromolecular assemblies with different types of conformational variability: the Escherichia coli ribosome and Simian virus 40 (SV40) large T-antigen.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Florence Tama; Mikel Valle; Joachim Frank; Charles L. Brooks
Combining structural data for the ribosome from x-ray crystallography and cryo-electron microscopy with dynamic models based on elastic network normal mode analysis, an atomically detailed picture of functionally important structural rearrangements that occur during translocation is elucidated. The dynamic model provides a near-atomic description of the ratchet-like rearrangement of the 70S ribosome seen in cryo-electron microscopy, and permits the identification of bridging interactions that either facilitate the conformational switching or maintain structural integrity of the 50S/30S interface. Motions of the tRNAs residing in the A and P sites also suggest the early stages of tRNA translocation as a result of this ratchet-like movement. Displacement of the L1 stalk, alternately closing and opening the intersubunit space near the E site, is observed in the dynamic model, in line with growing experimental evidence for the role of this structural component in facilitating the exiting of tRNA. Finally, a hinge-like transition in the 30S ribosomal subunit, similar to that observed in crystal structures of this complex, is also manifest as a dynamic mode of the ribosome. The coincidence of these dynamic transitions with the individual normal modes of the ribosome and the good correspondence between these motions and those observed in experiment suggest an underlying principle of nature to exploit the shape of molecular assemblies such as the ribosome to provide robustness to functionally important motions.
The EMBO Journal | 2002
Mikel Valle; Jayati Sengupta; Neil K. Swami; Robert A. Grassucci; Nils Burkhardt; Knud H. Nierhaus; Rajendra K. Agrawal; Joachim Frank
During the elongation cycle of protein biosynthesis, the specific amino acid coded for by the mRNA is delivered by a complex that is comprised of the cognate aminoacyl‐tRNA, elongation factor Tu and GTP. As this ternary complex binds to the ribosome, the anticodon end of the tRNA reaches the decoding center in the 30S subunit. Here we present the cryo‐ electron microscopy (EM) study of an Escherichia coli 70S ribosome‐bound ternary complex stalled with an antibiotic, kirromycin. In the cryo‐EM map the anticodon arm of the tRNA presents a new conformation that appears to facilitate the initial codon–anticodon interaction. Furthermore, the elbow region of the tRNA is seen to contact the GTPase‐associated center on the 50S subunit of the ribosome, suggesting an active role of the tRNA in the transmission of the signal prompting the GTP hydrolysis upon codon recognition.
Cell | 2003
Haixiao Gao; Jayati Sengupta; Mikel Valle; Andrei Korostelev; Narayanan Eswar; Scott M. Stagg; Patrick Van Roey; Rajendra K. Agrawal; Stephen C. Harvey; Andrej Sali; Michael S. Chapman; Joachim Frank
Cryo-EM density maps showing the 70S ribosome of E. coli in two different functional states related by a ratchet-like motion were analyzed using real-space refinement. Comparison of the two resulting atomic models shows that the ribosome changes from a compact structure to a looser one, coupled with the rearrangement of many of the proteins. Furthermore, in contrast to the unchanged inter-subunit bridges formed wholly by RNA, the bridges involving proteins undergo large conformational changes following the ratchet-like motion, suggesting an important role of ribosomal proteins in facilitating the dynamics of translation.
Nature | 2003
Urmila Rawat; Andrey Zavialov; Jayati Sengupta; Mikel Valle; Robert A. Grassucci; Jamie Linde; Bente Vestergaard; Måns Ehrenberg; Joachim Frank
Protein synthesis takes place on the ribosome, where genetic information carried by messenger RNA is translated into a sequence of amino acids. This process is terminated when a stop codon moves into the ribosomal decoding centre (DC) and is recognized by a class-1 release factor (RF). RFs have a conserved GGQ amino-acid motif, which is crucial for peptide release and is believed to interact directly with the peptidyl-transferase centre (PTC) of the 50S ribosomal subunit. Another conserved motif of RFs (SPF in RF2) has been proposed to interact directly with stop codons in the DC of the 30S subunit. The distance between the DC and PTC is ∼73 Å. However, in the X-ray structure of RF2, SPF and GGQ are only 23 Å apart, indicating that they cannot be at DC and PTC simultaneously. Here we show that RF2 is in an open conformation when bound to the ribosome, allowing GGQ to reach the PTC while still allowing SPF–stop-codon interaction. The results indicate new interpretations of accuracy in termination, and have implications for how the presence of a stop codon in the DC is signalled to PTC.
Molecular Cell | 2001
Irene S. Gabashvili; Steven T. Gregory; Mikel Valle; Robert A. Grassucci; Michael Worbs; Markus C. Wahl; Albert E. Dahlberg; Joachim Frank
Variations in the inner ribosomal landscape determining the topology of nascent protein transport have been studied by three-dimensional cryo-electron microscopy of erythromycin-resistant Escherichia coli 70S ribosomes. Significant differences in the mouth of the 50S subunit tunnel system visualized in the present study support a simple steric-hindrance explanation for the action of the drug. Examination of ribosomes in different functional states suggests that opening and closing of the main tunnel are dynamic features of the large subunit, possibly accompanied by changes in the L7/L12 stalk region. The existence and dynamic behavior of side tunnels suggest that ribosomal proteins L4 and L22 might be involved in the regulation of a multiple exit system facilitating cotranslational processing (or folding or directing) of nascent proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Patricia Julián; Andrey L. Konevega; Sjors H.W. Scheres; Melisa Lázaro; David Gil; Wolfgang Wintermeyer; Marina V. Rodnina; Mikel Valle
During protein synthesis, tRNAs and mRNA move through the ribosome between aminoacyl (A), peptidyl (P), and exit (E) sites of the ribosome in a process called translocation. Translocation is accompanied by the displacement of the tRNAs on the large ribosomal subunit toward the hybrid A/P and P/E states and by a rotational movement (ratchet) of the ribosomal subunits relative to one another. So far, the structure of the ratcheted state has been observed only when translation factors were bound to the ribosome. Using cryo-electron microscopy and classification, we show here that ribosomes can spontaneously adopt a ratcheted conformation with tRNAs in their hybrid states. The peptidyl-tRNA molecule in the A/P state, which is visualized here, is not distorted compared with the A/A state except for slight adjustments of its acceptor end, suggesting that the displacement of the A-site tRNA on the 50S subunit is passive and is induced by the 30S subunit rotation. Simultaneous subunit ratchet and formation of the tRNA hybrid states precede and may promote the subsequent rapid and coordinated tRNA translocation on the 30S subunit catalyzed by elongation factor G.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Henning Tidow; Roberto Melero; Efstratios Mylonas; Stefan M. V. Freund; J. Guenter Grossmann; José María Carazo; Dmitri I. Svergun; Mikel Valle; Alan R. Fersht
The homotetrameric tumor suppressor p53 consists of folded core and tetramerization domains, linked and flanked by intrinsically disordered segments that impede structure analysis by x-ray crystallography and NMR. Here, we solved the quaternary structure of human p53 in solution by a combination of small-angle x-ray scattering, which defined its shape, and NMR, which identified the core domain interfaces and showed that the folded domains had the same structure in the intact protein as in fragments. We combined the solution data with electron microscopy on immobilized samples that provided medium resolution 3D maps. Ab initio and rigid body modeling of scattering data revealed an elongated cross-shaped structure with a pair of loosely coupled core domain dimers at the ends, which are accessible for binding to DNA and partner proteins. The core domains in that open conformation closed around a specific DNA response element to form a compact complex whose structure was independently determined by electron microscopy. The structure of the DNA complex is consistent with that of the complex of four separate core domains and response element fragments solved by x-ray crystallography and contacts identified by NMR. Electron microscopy on the conformationally mobile, unbound p53 selected a minor compact conformation, which resembled the closed conformation, from the ensemble of predominantly open conformations. A multipronged structural approach could be generally useful for the structural characterization of the rapidly growing number of multidomain proteins with intrinsically disordered regions.