Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikhail K. Levin is active.

Publication


Featured researches published by Mikhail K. Levin.


Nature Communications | 2016

Individual heritable differences result in unique cell lymphocyte receptor repertoires of naive and antigen-experienced cells

Florian Rubelt; Christopher R. Bolen; Helen M. McGuire; Jason A. Vander Heiden; Daniel Gadala-Maria; Mikhail K. Levin; Ghia Euskirchen; Murad R. Mamedov; Gary E. Swan; Cornelia L. Dekker; Lindsay G. Cowell; Steven H. Kleinstein; Mark M. Davis

The adaptive immune systems capability to protect the body requires a highly diverse lymphocyte antigen receptor repertoire. However, the influence of individual genetic and epigenetic differences on these repertoires is not typically measured. By leveraging the unique characteristics of B, CD4+ T and CD8+ T-lymphocyte subsets from monozygotic twins, we quantify the impact of heritable factors on both the V(D)J recombination process and on thymic selection. We show that the resulting biases in both V(D)J usage and N/P addition lengths, which are found in naïve and antigen experienced cells, contribute to significant variation in the CDR3 region. Moreover, we show that the relative usage of V and J gene segments is chromosomally biased, with ∼1.5 times as many rearrangements originating from a single chromosome. These data refine our understanding of the heritable mechanisms affecting the repertoire, and show that biases are evident on a chromosome-wide level.


Gene | 2015

MSPrecise: A molecular diagnostic test for multiple sclerosis using next generation sequencing.

William Rounds; Edward Salinas; Tom B. Wilks; Mikhail K. Levin; Ann J. Ligocki; Carolina Ionete; Carlos A. Pardo; Steven Vernino; Benjamin Greenberg; Douglas Bigwood; Eric M. Eastman; Lindsay G. Cowell; Nancy L. Monson

BACKGROUND We have previously demonstrated that cerebrospinal fluid-derived B cells from early relapsing-remitting multiple sclerosis (RRMS) patients that express a VH4 gene accumulate specific replacement mutations. These mutations can be quantified as a score that identifies such patients as having or likely to convert to RRMS. Furthermore, we showed that next generation sequencing is an efficient method for obtaining the sequencing information required by this mutation scoring tool, originally developed using the less clinically viable single-cell Sanger sequencing. OBJECTIVE To determine the accuracy of MSPrecise, the diagnostic test that identifies the presence of the RRMS-enriched mutation pattern from patient cerebrospinal fluid B cells. METHODS Cerebrospinal fluid cell pellets were obtained from RRMS and other neurological disease (OND) patient cohorts. VH4 gene segments were amplified, sequenced by next generation sequencing and analyzed for mutation score. RESULTS The diagnostic test showed a sensitivity of 75% on the RRMS cohort and a specificity of 88% on the OND cohort. The accuracy of the test in identifying RRMS patients or patients that will develop RRMS is 84%. CONCLUSION MSPrecise exhibits good performance in identifying patients with RRMS irrespective of time with RRMS.


G3: Genes, Genomes, Genetics | 2012

Haplotype Association Mapping Identifies a Candidate Gene Region in Mice Infected With Staphylococcus aureus.

Nicole V. Johnson; Sun Hee Ahn; Hitesh Deshmukh; Mikhail K. Levin; Charlotte L. Nelson; William K. Scott; Andrew S. Allen; Vance G. Fowler; Lindsay G. Cowell

Exposure to Staphylococcus aureus has a variety of outcomes, from asymptomatic colonization to fatal infection. Strong evidence suggests that host genetics play an important role in susceptibility, but the specific host genetic factors involved are not known. The availability of genome-wide single nucleotide polymorphism (SNP) data for inbred Mus musculus strains means that haplotype association mapping can be used to identify candidate susceptibility genes. We applied haplotype association mapping to Perlegen SNP data and kidney bacterial counts from Staphylococcus aureus-infected mice from 13 inbred strains and detected an associated block on chromosome 7. Strong experimental evidence supports the result: a separate study demonstrated the presence of a susceptibility locus on chromosome 7 using consomic mice. The associated block contains no genes, but lies within the gene cluster of the 26-member extended kallikrein gene family, whose members have well-recognized roles in the generation of antimicrobial peptides and the regulation of inflammation. Efficient mixed-model association (EMMA) testing of all SNPs with two alleles and located within the gene cluster boundaries finds two significant associations: one of the three polymorphisms defining the associated block and one in the gene closest to the block, Klk1b11. In addition, we find that 7 of the 26 kallikrein genes are differentially expressed between susceptible and resistant mice, including the Klk1b11 gene. These genes represent a promising set of candidate genes influencing susceptibility to Staphylococcus aureus.


BMC Bioinformatics | 2016

VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements

Inimary T. Toby; Mikhail K. Levin; Edward Salinas; Scott Christley; Sanchita Bhattacharya; Felix Breden; Adam Buntzman; Brian Corrie; John M. Fonner; Namita T. Gupta; Uri Hershberg; Nishanth Marthandan; Aaron M. Rosenfeld; William Rounds; Florian Rubelt; Walter Scarborough; Jamie K. Scott; Mohamed Uduman; Jason A. Vander Heiden; Richard H. Scheuermann; Nancy L. Monson; Steven H. Kleinstein; Lindsay G. Cowell

BackgroundThe genes that produce antibodies and the immune receptors expressed on lymphocytes are not germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J recombination, which assembles specific, independent gene segments into mature composite genes. The full set of composite genes in an individual at a single point in time is referred to as the immune repertoire. V(D)J recombination is the distinguishing feature of adaptive immunity and enables effective immune responses against an essentially infinite array of antigens. Characterization of immune repertoires is critical in both basic research and clinical contexts. Recent technological advances in repertoire profiling via high-throughput sequencing have resulted in an explosion of research activity in the field. This has been accompanied by a proliferation of software tools for analysis of repertoire sequencing data. Despite the widespread use of immune repertoire profiling and analysis software, there is currently no standardized format for output files from V(D)J analysis. Researchers utilize software such as IgBLAST and IMGT/High V-QUEST to perform V(D)J analysis and infer the structure of germline rearrangements. However, each of these software tools produces results in a different file format, and can annotate the same result using different labels. These differences make it challenging for users to perform additional downstream analyses.ResultsTo help address this problem, we propose a standardized file format for representing V(D)J analysis results. The proposed format, VDJML, provides a common standardized format for different V(D)J analysis applications to facilitate downstream processing of the results in an application-agnostic manner. The VDJML file format specification is accompanied by a support library, written in C++ and Python, for reading and writing the VDJML file format.ConclusionsThe VDJML suite will allow users to streamline their V(D)J analysis and facilitate the sharing of scientific knowledge within the community. The VDJML suite and documentation are available from https://vdjserver.org/vdjml/. We welcome participation from the community in developing the file format standard, as well as code contributions.


Frontiers in Neurology | 2014

The Antibody Genetics of Multiple Sclerosis: Comparing Next-Generation Sequencing to Sanger Sequencing

William Rounds; Ann J. Ligocki; Mikhail K. Levin; Benjamin Greenberg; Douglas Bigwood; Eric M. Eastman; Lindsay G. Cowell; Nancy L. Monson

We previously identified a distinct mutation pattern in the antibody genes of B cells isolated from cerebrospinal fluid (CSF) that can identify patients who have relapsing-remitting multiple sclerosis (RRMS) and patients with clinically isolated syndromes who will convert to RRMS. This antibody gene signature (AGS) was developed using Sanger sequencing of single B cells. While potentially helpful to patients, Sanger sequencing is not an assay that can be practically deployed in clinical settings. In order to provide AGS evaluations to patients as part of their diagnostic workup, we developed protocols to generate AGS scores using next-generation DNA sequencing (NGS) on CSF-derived cell pellets without the need to isolate single cells. This approach has the potential to increase the coverage of the B-cell population being analyzed, reduce the time needed to generate AGS scores, and may improve the overall performance of the AGS approach as a diagnostic test in the future. However, no investigations have focused on whether NGS-based repertoires will properly reflect antibody gene frequencies and somatic hypermutation patterns defined by Sanger sequencing. To address this issue, we isolated paired CSF samples from eight patients who either had MS or were at risk to develop MS. Here, we present data that antibody gene frequencies and somatic hypermutation patterns are similar in Sanger and NGS-based antibody repertoires from these paired CSF samples. In addition, AGS scores derived from the NGS database correctly identified the patients who initially had or subsequently converted to RRMS, with precision similar to that of the Sanger sequencing approach. Further investigation of the utility of the AGS in predicting conversion to MS using NGS-derived antibody repertoires in a larger cohort of patients is warranted.


Journal of Biomedical Semantics | 2015

owlcpp: a C++ library for working with OWL ontologies.

Mikhail K. Levin; Lindsay G. Cowell

BackgroundThe increasing use of ontologies highlights the need for a library for working with ontologies that is efficient, accessible from various programming languages, and compatible with common computational platforms.ResultsWe developed owlcpp, a library for storing and searching RDF triples, parsing RDF/XML documents, converting triples into OWL axioms, and reasoning. The library is written in ISO-compliant C++ to facilitate efficiency, portability, and accessibility from other programming languages. Internally, owlcpp uses the Raptor RDF Syntax library for parsing RDF/XML and the FaCT++ library for reasoning. The current version of owlcpp is supported under Linux, OSX, and Windows platforms and provides an API for Python.ConclusionsThe results of our evaluation show that, compared to other commonly used libraries, owlcpp is significantly more efficient in terms of memory usage and searching RDF triple stores. owlcpp performs strict parsing and detects errors ignored by other libraries, thus reducing the possibility of incorrect semantic interpretation of ontologies. owlcpp is available at http://owl-cpp.sf.net/ under the Boost Software License, Version 1.0.


Frontiers in Immunology | 2018

VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements

Scott Christley; Walter Scarborough; Eddie Salinas; William Rounds; Inimary T. Toby; John M. Fonner; Mikhail K. Levin; Min Kim; Stephen A. Mock; Christopher Jordan; Jared Ostmeyer; Adam Buntzman; Florian Rubelt; Marco L. Davila; Nancy L. Monson; Richard H. Scheuermann; Lindsay G. Cowell

Background Recent technological advances in immune repertoire sequencing have created tremendous potential for advancing our understanding of adaptive immune response dynamics in various states of health and disease. Immune repertoire sequencing produces large, highly complex data sets, however, which require specialized methods and software tools for their effective analysis and interpretation. Results VDJServer is a cloud-based analysis portal for immune repertoire sequence data that provide access to a suite of tools for a complete analysis workflow, including modules for preprocessing and quality control of sequence reads, V(D)J gene segment assignment, repertoire characterization, and repertoire comparison. VDJServer also provides sophisticated visualizations for exploratory analysis. It is accessible through a standard web browser via a graphical user interface designed for use by immunologists, clinicians, and bioinformatics researchers. VDJServer provides a data commons for public sharing of repertoire sequencing data, as well as private sharing of data between users. We describe the main functionality and architecture of VDJServer and demonstrate its capabilities with use cases from cancer immunology and autoimmunity. Conclusion VDJServer provides a complete analysis suite for human and mouse T-cell and B-cell receptor repertoire sequencing data. The combination of its user-friendly interface and high-performance computing allows large immune repertoire sequencing projects to be analyzed with no programming or software installation required. VDJServer is a web-accessible cloud platform that provides access through a graphical user interface to a data management infrastructure, a collection of analysis tools covering all steps in an analysis, and an infrastructure for sharing data along with workflows, results, and computational provenance. VDJServer is a free, publicly available, and open-source licensed resource.


BMC Bioinformatics | 2017

VDJPipe: A pipelined tool for pre-processing immune repertoire sequencing data

Scott Christley; Mikhail K. Levin; Inimary T. Toby; John M. Fonner; Nancy L. Monson; William Rounds; Florian Rubelt; Walter Scarborough; Richard H. Scheuermann; Lindsay G. Cowell

BackgroundPre-processing of high-throughput sequencing data for immune repertoire profiling is essential to insure high quality input for downstream analysis. VDJPipe is a flexible, high-performance tool that can perform multiple pre-processing tasks with just a single pass over the data files.ResultsProcessing tasks provided by VDJPipe include base composition statistics calculation, read quality statistics calculation, quality filtering, homopolymer filtering, length and nucleotide filtering, paired-read merging, barcode demultiplexing, 5′ and 3′ PCR primer matching, and duplicate reads collapsing. VDJPipe utilizes a pipeline approach whereby multiple processing steps are performed in a sequential workflow, with the output of each step passed as input to the next step automatically. The workflow is flexible enough to handle the complex barcoding schemes used in many immunosequencing experiments. Because VDJPipe is designed for computational efficiency, we evaluated this by comparing execution times with those of pRESTO, a widely-used pre-processing tool for immune repertoire sequencing data. We found that VDJPipe requires <10% of the run time required by pRESTO.ConclusionsVDJPipe is a high-performance tool that is optimized for pre-processing large immune repertoire sequencing data sets.


2nd International Conference on Biomedical Ontology, ICBO 2011 | 2011

Connecting ontologies for the representation of biological pathways

Anna Maria Masci; Mikhail K. Levin; Alan Ruttenberg; Lindsay G. Cowell


Journal of Immunology | 2014

Predicting conversion to multiple sclerosis using antibody genetics: comparing Sanger and next generation sequencing methods. (TECH1P.858)

William Rounds; Ann J. Ligocki; Mikhail K. Levin; Benjamin Greenberg; Douglas Bigwood; Eric M. Eastman; Lindsay G. Cowell; Nancy L. Monson

Collaboration


Dive into the Mikhail K. Levin's collaboration.

Top Co-Authors

Avatar

Lindsay G. Cowell

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nancy L. Monson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

William Rounds

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin Greenberg

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric M. Eastman

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann J. Ligocki

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Inimary T. Toby

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John M. Fonner

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge