Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikhail Reibarkh is active.

Publication


Featured researches published by Mikhail Reibarkh.


Science | 2017

A multifunctional catalyst that stereoselectively assembles prodrugs

Daniel A. DiRocco; Yining Ji; Edward C. Sherer; Artis Klapars; Mikhail Reibarkh; James F. Dropinski; Rose Mathew; Peter E. Maligres; Alan M. Hyde; John Limanto; Andrew Brunskill; Rebecca T. Ruck; Louis-Charles Campeau; Ian W. Davies

Getting phosphorus into healthy shape ProTide therapeutics play a trick on the body, getting nucleoside analogs where they need to be by decorating them with unnatural phosphoramidates in place of ordinary phosphates. These compounds pose an unusual synthetic challenge because their configuration must be controlled at phosphorus; most methods have been refined to manipulate the geometry of carbon. DiRocco et al. report a metal-free, small-molecule catalyst that attains high selectivity for nucleoside phosphoramidation by activating both reaction partners. Kinetic studies with an early prototype revealed a double role for the catalyst that inspired the rational design of a more active and selective dimeric structure. Science, this issue p. 426 A doubly activating catalyst efficiently forms key phosphorus-based chiral centers inherent to ProTide therapeutics. The catalytic stereoselective synthesis of compounds with chiral phosphorus centers remains an unsolved problem. State-of-the-art methods rely on resolution or stoichiometric chiral auxiliaries. Phosphoramidate prodrugs are a critical component of pronucleotide (ProTide) therapies used in the treatment of viral disease and cancer. Here we describe the development of a catalytic stereoselective method for the installation of phosphorus-stereogenic phosphoramidates to nucleosides through a dynamic stereoselective process. Detailed mechanistic studies and computational modeling led to the rational design of a multifunctional catalyst that enables stereoselectivity as high as 99:1.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of highly potent and efficacious MC4R agonists with spiroindane N-Me-1,2,4-triazole privileged structures for the treatment of obesity

Shuwen He; Zhixiong Ye; Peter H. Dobbelaar; Raman K. Bakshi; Qingmei Hong; James Dellureficio; Iyassu K. Sebhat; Liangqin Guo; Jian Liu; Tianying Jian; Yingjie Lai; Christopher L. Franklin; Mikhail Reibarkh; Mark A. Holmes; David H. Weinberg; Tanya MacNeil; Rui Tang; Constantin Tamvakopoulos; Qianping Peng; Randy R. Miller; Ralph A. Stearns; Howard Y. Chen; Airu S. Chen; Alison M. Strack; Tung M. Fong; Matthew J. Wyvratt; Ravi P. Nargund

We report an SAR study of MC4R analogs containing spiroindane heterocyclic privileged structures. Compound 26 with N-Me-1,2,4-triazole moiety possesses exceptional potency at MC4R and potent anti-obesity efficacy in a mouse model. However, the efficacy is not completely mediated through MC4R. Additional SAR studies led to the discovery of compound 32, which is more potent at MC4R. Compound 32 demonstrates MC4R mediated anti-obesity efficacy in rodent models.


Magnetic Resonance in Chemistry | 2013

Coniothyrione: anatomy of a structure revision.

Gary E. Martin; Alexei V. Buevich; Mikhail Reibarkh; Sheo B. Singh; John G. Ondeyka; R. Thomas Williamson

Coniothyrione is a xanthone‐derived antibiotic reported several years ago by researchers at Merck & Co. Inc. Revision of the position of the chloro substitution was recently proposed on the basis of empirical reinterpretation of the carbon chemical shift data and a hypothetical biosynthetic argument without the acquisition of any new spectral data to support the postulated change in substituent location. The originally published HMBC data lead to an equivocal assignment of the structure and do not provide a solid basis of support for either structure. Neural network 13C chemical shift calculations and density functional theory calculations also led to undifferentiated structures. Definitive confirmation of the structure of coniothyrione based on the acquisition and interpretation of 1,1‐ADEQUATE and inverted 1JCC 1,n‐ADEQUATE data is now reported. Copyright


Magnetic Resonance in Chemistry | 2012

1JCC-edited HSQC-1,n-ADEQUATE: a new paradigm for simultaneous direct and long-range carbon–carbon correlation

Gary E. Martin; Kirill A. Blinov; Mikhail Reibarkh; R. Thomas Williamson

Establishing the carbon skeleton of a molecule greatly facilitates the process of structure elucidation, leaving only heteroatoms to be inserted, heterocyclic rings to be closed, and stereochemical features to be defined. INADEQUATE, and more recently PANACEA, have been the only means of coming close to the goal of totally defining the carbon skeleton of a molecule. Unfortunately, the extremely low sensitivity and prodigious sample requirements of these experiments and the multiple receiver requirement for the latter experiment have severely restricted the usage of these experiments. Proton‐detected ADEQUATE experiments, in contrast, have considerably higher sensitivity and more modest sample requirements. By combining experiments such as 1,1‐ADEQUATE and 1,n‐ADEQUATE with higher sensitivity experiments such as GHSQC through covariance processing, sample requirements can be further reduced with a commensurate improvement in the s/n ratio and F1 resolution of the covariance processed spectrum. We now wish to report the covariance processing of an inverted 1JCC 1,n‐ADEQUATE experiment with a non‐edited GHSQC spectrum to afford a spectrum that can trace the carbon skeleton of a molecule with the exception of correlations between quaternary carbons. Copyright


Journal of Magnetic Resonance | 2013

Broadband inversion of 1JCC responses in 1,n-ADEQUATE spectra

Mikhail Reibarkh; R. Thomas Williamson; Gary E. Martin; Wolfgang Bermel

Establishing the carbon skeleton of a molecule greatly facilitates the process of structure elucidation, both manual and computer-assisted. Recent advances in the family of ADEQUATE experiments demonstrated their potential in this regard. 1,1-ADEQUATE, which provides direct (13)C-(13)C correlation via (1)J(CC), and 1,n-ADEQUATE, which typically yields (3)J(CC) and (1)J(CC) correlations, are more sensitive and more widely applicable experiments than INADEQUATE and PANACEA. A recently reported modified pulse sequence that semi-selectively inverts (1)J(CC) correlations in 1,n-ADEQUATE spectra provided a significant improvement, allowing (1)J(CC) and (n)J(CC) correlations to be discerned in the same spectrum. However, the reported experiment requires a careful matching of the amplitude transfer function with (1)J(CC) coupling constants in order to achieve the inversion, and even then some (1)J(CC) correlations could still have positive intensity due to the oscillatory nature of the transfer function. Both shortcomings limit the practicality of the method. We now report a new, dual-optimized inverted (1)J(CC) 1,n-ADEQUATE experiment, which provides more uniform inversion of (1)J(CC) correlations across the range of 29-82 Hz. Unlike the original method, the dual optimization experiment does not require fine-tuning for the molecules (1)J(CC) coupling constant values. Even more usefully, the dual-optimized version provides up to two-fold improvement in signal-to-noise for some long-range correlations. Using modern, cryogenically-cooled probes, the experiment can be successfully applied to samples of ~1 mg under favorable circumstances. The improvements afforded by dual optimization inverted (1)J(CC) 1,n-ADEQUATE experiment make it a useful and practical tool for NMR structure elucidation and should facilitate the implementation and utilization of the experiment.


Journal of Organic Chemistry | 2014

Asymmetric Synthesis of Cyclic Indole Aminals via 1,3-Stereoinduction

Hongmei Li; Cheng-yi Chen; Hoa Nguyen; Ryan D. Cohen; Peter E. Maligres; Nobuyoshi Yasuda; Ian Mangion; Ilia Zavialov; Mikhail Reibarkh; John Y. L. Chung

A general and efficient asymmetric synthesis of cyclic indoline aminals was developed with a high level of 1,3-stereoinduction through a dynamic crystallization-driven condensation. Dehydrogenation of the indoline aminals with potassium permanganate produced the corresponding cyclic indole aminals in high yields and excellent enantioselectivities. This general methodology was successfully applied to the synthesis of a wide variety of chiral cyclic indoline aminals and indole aminals with aromatic and aliphatic functional groups.


ACS Medicinal Chemistry Letters | 2012

The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes

Shuwen He; Zhixiong Ye; Quang Truong; Shrenik K. Shah; Wu Du; Liangqin Guo; Peter H. Dobbelaar; Zhong Lai; Jian Liu; Tianying Jian; Hongbo Qi; Raman K. Bakshi; Qingmei Hong; James Dellureficio; Alexander Pasternak; Zhe Feng; Reynalda Dejesus; Lihu Yang; Mikhail Reibarkh; Scott A. Bradley; Mark A. Holmes; Richard G. Ball; Rebecca T. Ruck; Mark A. Huffman; Frederick Wong; Koppara Samuel; Vijay Bhasker G. Reddy; Stan Mitelman; Sharon Tong; Gary G. Chicchi

A structure-activity relationship study of the imidazolyl-β-tetrahydrocarboline series identified MK-4256 as a potent, selective SSTR3 antagonist, which demonstrated superior efficacy in a mouse oGTT model. MK-4256 reduced glucose excursion in a dose-dependent fashion with maximal efficacy achieved at doses as low as 0.03 mg/kg po. As compared with glipizide, MK-4256 showed a minimal hypoglycemia risk in mice.


ACS Medicinal Chemistry Letters | 2014

Investigation of Cardiovascular Effects of Tetrahydro-β-carboline sstr3 antagonists

Shuwen He; Zhong Lai; Zhixiong Ye; Peter H. Dobbelaar; Shrenik K. Shah; Quang Truong; Wu Du; Liangqin Guo; Jian Liu; Tianying Jian; Hongbo Qi; Raman K. Bakshi; Qingmei Hong; James Dellureficio; Mikhail Reibarkh; Koppara Samuel; Vijay Bhasker G. Reddy; Stan Mitelman; Sharon Tong; Gary G. Chicchi; Kwei-Lan Tsao; Dorina Trusca; Margaret Wu; Qing Shao; Maria E. Trujillo; Guillermo Fernandez; Donald Nelson; Patricia B. Bunting; Janet Kerr; Patrick Fitzgerald

Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.


Bioorganic & Medicinal Chemistry Letters | 2012

A new class of prolylcarboxypeptidase inhibitors, part 2: the aminocyclopentanes.

Thomas H. Graham; Wensheng Liu; Andreas Verras; Mikhail Reibarkh; Kelly Bleasby; Urmi R. Bhatt; Qing Chen; Margarita Garcia-Calvo; Wayne M. Geissler; Judith N. Gorski; Huaibing He; JeanMarie Lisnock; Xiaohua Li; Zhu Shen; Xinchun Tong; Elaine C. Tung; Judyann Wiltsie; Dan Xie; Suoyu Xu; Jianying Xiao; Jeffrey J. Hale; Shirly Pinto; Dong-Ming Shen

A series of potent inhibitors of prolylcarboxypeptidase (PrCP) was developed by modifying a lead structure that was discovered by high-throughput screening. The tert-butyl pyrrolidine was replaced by an aminocyclopentane to reduce the metabolic liabilities of the original lead. The compounds demonstrated sub-nanomolar in vitro IC(50) values, minimal activity shifts in pure plasma and improved pharmacokinetics. Complete ex vivo plasma target engagement was achieved with low brain exposure at the 20 h time point following p.o. dosing in a mouse. The results indicate that the aminocyclopentanes are useful tools for studying the therapeutic potential of peripheral (non-CNS) PrCP inhibition.


Bioorganic & Medicinal Chemistry Letters | 2010

Substituted fused bicyclic pyrrolizinones as potent, orally bioavailable hNK1 antagonists.

Gregori J. Morriello; Sander G. Mills; Tricia Johnson; Mikhail Reibarkh; Gary G. Chicchi; Julie A. DeMartino; Marc M. Kurtz; Philip Davies; Kwei-Lan Tsao; Song Zheng; Xinchun Tong; Emma J. Carlson; Karen Townson; F.D. Tattersall; Alan Wheeldon; Susan Boyce; Neil Collinson; N.M.J. Rupniak; Stephen Moore; Robert J. DeVita

Previous work on human NK(1) (hNK(1)) antagonists in which the core of the structure is a 5,5-fused pyrrolizinone has been disclosed. The structural-activity-relationship studies on simple alpha- and beta-substituted compounds of this series provided several potent and bioavailable hNK(1) antagonists that displayed excellent brain penetration as observed by their good efficacy in the gerbil foot-tapping (GFT) model assay. Several of these compounds exhibited 100% inhibition of the foot-tapping response at 0.1 and 24h with ID(50)s of less than 1 mpk. One particular alpha-substituted compound (2b) had an excellent pharmacokinetic profile across preclinical species with reasonable in vivo functional activity and minimal ancillary activity.

Collaboration


Dive into the Mikhail Reibarkh's collaboration.

Researchain Logo
Decentralizing Knowledge