Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikhaylo Trunov is active.

Publication


Featured researches published by Mikhaylo Trunov.


Combustion Theory and Modelling | 2006

Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles

Mikhaylo Trunov; Mirko Schoenitz; Edward L. Dreizin

The mechanism of aluminium oxidation is quantified and a simplified ignition model is developed. The model describes ignition of an aluminium particle inserted in a hot oxygenated gas environment: a scenario similar to the particle ignition in a reflected shock in a shock tube experiment. The model treats heterogeneous oxidation as an exothermic process leading to ignition. The ignition is assumed to occur when the particles temperature exceeds the alumina melting point. The model analyses processes of simultaneous growth and phase transformations in the oxide scale. Kinetic parameters for both direct oxidative growth and phase transformations are determined from thermal analysis. Additional assumptions about oxidation rates are made to account for discontinuities produced in the oxide scale as a result of increase in its density caused by the polymorphic phase changes. The model predicts that particles of different sizes ignite at different environment temperatures. Generally, finer particles ignite at lower temperatures. The model consistently interprets a wide range of the previously published experimental data describing aluminium ignition.


Journal of Propulsion and Power | 2008

Combustion of Boron-Titanium Nanocomposite Powders in Different Environments

Mikhaylo Trunov; Vern K. Hoffmann; Mirko Schoenitz; Edward L. Dreizin

Combustion of nanocomposite powders with the bulk composition 2B+Ti was compared with combustion of blended boron and titanium powders with the same bulk composition and with combustion of aluminum in wet and dry gas environments. Nanocomposite powders were prepared by Arrested Reactive Milling. The gas environments were N2/O 2/CH 4 mixtures with oxygen concentration fixed at 22.5 % and methane concentration varied from 0 to 12 %. The experiments were conducted in a constant volume explosion vessel. The mass loads of metallic fuel were determined from thermodynamic calculations to ensure the maximum flame temperature for each metal fuel – gas mixture combination. The calculations showed that despite the higher adiabatic flame temperatures for Al than for 2B+Ti, a greater energy per unit mass of metal fuel was released to produce heated gaseous combustion products in combustion of 2B+Ti as compared to Al. Experiments with Al powders showed that the flame temperature did not change noticeably as a function of gas composition and remained close to 2560 K. The combustion temperature for the nanocomposite 2B+Ti increased from about 2180 to 2370 K as the methane concentration increased from 0 to 12 %. The bulk burn rates inferred from the rates of pressure rise were consistently higher for the nanocomposite 2B+Ti powder, followed by Al and then by the blended 2B+Ti powder. The efficiency of combustion for all the fuels was assessed by comparing the predicted and experimental portions of the combustion energy used to produce the heated gaseous products. Based on this assessment, nanocomposite boron-based fuels outperformed Al for all environments, with the difference increasing at the increased methane concentrations. Nearly complete combustion was observed for both 2B+Ti fuels (nanocomposite and blended powders) at high methane concentration, when the highest rates of combustion were also observed. Thus, the effect of kinetic trap associated with formation of HOBO could not be detected. It was concluded that nanocomposite 2B+Ti powders enable one to achieve rapid and highly efficient combustion in both dry and wet gaseous environments.


Combustion Science and Technology | 2010

Characteristics of Aluminum Combustion Obtained from Constant-Volume Explosion Experiments

Priya R. Santhanam; Vern K. Hoffmann; Mikhaylo Trunov; Edward L. Dreizin

Combustion of aluminum powders was studied using a constant volume explosion (CVE) experiment with varied powder mass loads, particle sizes, and environment compositions. A simplified model of aerosol combustion in CVE experiment was used to extract the information about the burning velocity from the measured pressure traces; additional assumptions were used to evaluate the flame thickness. It was observed that an increase in oxygen concentration always results in higher rates of pressure rise, shorter induction periods, and shorter aerosol combustion times. Similarly, adding methane to the gas mixture always results in shorter induction times, greater rates of pressure rise, and higher maximum combustion pressures. It was further observed that at increased oxygen concentrations, the kinetics of Al combustion may be faster than that of gas-phase combustion of methane. In most experiments, there was a period when the flame propagation occurred in a quasi-steady mode, with nearly constant burning velocity and flame thickness. The burning velocities measured for Al aerosols vary approximately from 0.25 to 1.3 m/s and compare well with those reported earlier for similar size Al powders. The aluminum aerosol flame thickness was evaluated to vary approximately from about 2.5 to 12 mm. Experimental results suggest that radiation is the dominant mechanism of heat transfer for the aerosol flames.


American Industrial Hygiene Association Journal | 2000

Particle Settling After Lead-Based Paint Abatement Work and Clearance Waiting Period

Kyoo T. Choe; Mikhaylo Trunov; Sergey A. Grinshpun; Klaus Willeke; Joshua Harney; Saulius Trakumas; Gediminas Mainelis; Robert L. Bornschein; Scott Clark; Warren Friedman

This study investigated the evolution of airborne particle concentration and size distribution following abatement work in a controlled environment utilizing direct real-time particle monitoring and used it to project potential lead loadings as those particles settle. An 860 ft3 environmental test chamber with sophisticated ventilation and air purifying systems was built. Wooden doors with lead-based paint were dry sanded or scraped to generate the highest feasible airborne lead concentrations. Size-fractional airborne particle concentrations decreased exponentially with time in all tests, even with no air exchange, consistent with the stirred model of constantly mixed air, which predicts longer settling than for tranquil settling. Very low levels of air mixing generated by temperature gradients and initial room air turbulence affected particle settling. About 90% of airborne lead mass settled within 1 hour after active abatement, before final cleaning began. During the second waiting period of 1 hour, which followed cleaning of the floor, additional dust settled so that the additional potential lead loading from remaining airborne lead was less than 20 microg/ft2. For this worst case scenario, the underestimate of the lead loading done by the clearance sampling did not exceed about 30%. For more realistic conditions, the underestimates are projected to be much lower than the new 40 microg/ft2 Housing and Urban Development (HUD) clearance standards for floor dust lead. These results were obtained for the first waiting period (between the end of active abatement and the beginning of cleaning) of 1 hour, as recommended by HUD guidelines. Thus, this study demonstrates no need to increase either the first or second waiting period.


Aerosol Science and Technology | 2010

Inactivation of Aerosolized Viruses in Continuous Air Flow with Axial Heating

Sergey A. Grinshpun; Atin Adhikari; Chunlei Li; Michael Yermakov; Lauri Reponen; Elisabet Johansson; Mikhaylo Trunov

Thermal inactivation of viruses has been studied in relevance to food sterilization, water purification, and other “non-aerosol” applications, in which heat treatment is applied for a relatively long time. No data are available on the inactivation of airborne viruses exposed to dry heat for a short time, although this is relevant to bio-defense and indoor air quality control. In this study, we investigated inactivation of aerosolized MS2 viruses in a continuous air flow chamber with axial heating resulted from exposures during ∼ 0.1–1 s. For an airborne virion, the characteristic exposure temperature, T e , was defined utilizing the air temperature profiles in the chamber. The tests were conducted at two air flow rates, Q, which allowed for establishing different thermal flow regimes and exposure time intervals. The experimentally determined inactivation factor, IF, was subjected to correction to account for the temperature profiles. At T e up to ∼ 90°C (Q = 18 L/min) and up to ∼ 140°C (Q = 36 L/min), the loss of viral infectivity was relatively modest (≤ 10). However, IF increased exponentially as T e rose from ∼ 90°C to ∼ 160°C (for 18 L/min) or from ∼ 140°C to ∼ 230°C (for 36 L/min). Under specific thermal exposure conditions (∼ 170°C and ∼ 250°C, respectively), IF exceeded ∼ 2.4 × 104 (∼ 99.996% infectivity loss)—the maximum quantifiable in this study. The airborne MS2 virions exposed to hot air for < 1 s were found to have survived much higher temperatures than those subjected to thermal treatment in liquid for minutes or hours. The findings are significant for establishing limitations of the heat-based bioaerosol control methods.


International conference on modelling, monitoring and management of air pollution | 2004

Indoor air pollution control through ionization

Sergey A. Grinshpun; Atin Adhikari; Byung Uk Lee; Mikhaylo Trunov; Gediminas Mainelis; Mikhail Yermakov; Tiina Reponen

Various health effects are associated with or directly caused by respirable airborne particles and microbial agents. To reduce the human exposure to these indoor pollutants, numerous techniques have been developed over the years. In this study, we have investigated the effect of unipolar air ionization on airborne dust particles and microorganisms in indoor environments. The concentration and particle size distribution were measured in real time using optical and aerodynamic particle counters with a special focus on the bacterial particle size range of 0.5 to 2 μm. The tests were conducted in three indoor chambers of different volumes (ranging from 26 L to 24.3 m 3 ) at different ion emission rates (producing air ions at ∼10 4 to ∼10 5 ions/cm 3 as measured at ∼1 m from the source). The concentration decay occurring due to ionic emission was compared to the natural decay for four types of challenge aerosols. Resulting from the interaction with unipolar air ions, airborne particles exhibited considerable electric charges of the same polarity as the emitted ions. Due to electrostatic repelling forces, the particles migrated toward the indoor surfaces and rapidly deposited on these surfaces. Two small, battery operated ionic emitters tested in this study showed significant air cleaning efficiency for respirable (sub- and super-micrometer) particles. This effect was more pronounced in smaller air volumes. The efficiency of ion emission in reducing the viability of airborne microorganisms in indoor air was also evaluated in a specially designed set-up. Two species of Gram-negative bacteria (Pseudomonas fluorescens and Escherichia coli) and one species of Gram-positive bacteria (Staphylococcus epidermidis) were tested. It was found that a significant percentage of airborne viable bacteria could be inactivated by the ion emission: up to 92% of E. coli was inactivated during a one-minute exposure in dry air. It was concluded that the ion-driven decrease in the aerosol concentration combined with the bactericidal effect can significantly reduce human exposure to indoor air pollutants, such as particles and microorganisms.


American Industrial Hygiene Association Journal | 2000

Release of lead-containing particles from a wall enclosure.

Joshua Harney; Mikhaylo Trunov; Sergey A. Grinshpun; Klaus Willeke; Kyoo T. Choe; Saulius Trakumas; Warren Friedman

The 1995 Department of Housing and Urban Development (HUD) Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing discusses using interior and exterior wall enclosures for lead hazard control. Leaded dust may be aerosolized inside enclosures and released through gaps and cracks into a room. The effects of airflow and mechanical disturbances on dust release were studied using a laboratory wall enclosure model with dust collected from homes with lead-based paint hazards. Airflows relevant to residences were blown down the enclosure and out a 4-, 6-, or 8-mm horizontal gap at its bottom, simulating potential enclosure failure. Then, low-frequency mechanical vibrations also were applied to the enclosure. No significant dust release was found when blowing air down the enclosure even at 37 cm/sec (representing extremely high flow); release occurred only with this high flow and 3 Hz mechanical disturbances. Dust was released primarily from the floor area immediately adjacent to the enclosure gap; the release rate fluctuated over time. Most dust initially settled near the enclosure. Dust release for 1 hour at extreme conditions (high airflow with vibration) yields lead loading above the 1995 HUD clearance level of 100 microg/ft2 only within 3-4 cm of the wall; for the HUD standard (1 ft2) sampling area, the lead loading does not exceed 30 microg/ ft2. Redistributing dust over the rooms 16 m2 floor space yields average extreme-condition loading rate of 2 microg/ft2/hour. At less-than-extreme conditions, dust would have to be released for years without cleaning to yield a hazard.


American Industrial Hygiene Association Journal | 2001

Test methods for evaluating the filtration and particulate emission characteristics of vacuum cleaners.

Klaus Willeke; Saulius Trakumas; Sergey A. Grinshpun; Tiina Reponen; Mikhaylo Trunov; Warren Friedman

The overall filtration efficiency of a vacuum cleaner traditionally has been tested by placing the vacuum cleaner in a test chamber and measuring aerosol concentrations at the chamber inlet and outlet. The chamber test method was refined and validated in this study. However, this chamber test method shows an overall filtration efficiency of close to 100% for most of the industrial vacuum cleaners and for most of the newly developed household vacuum cleaners of midprice range or higher because all these vacuum cleaners have a high-efficiency particulate air (HEPA) or other highly efficient filter installed at the exhaust. A new test method was therefore developed through which the vacuum cleaner was probed in various internal locations so that the collection efficiency of the individual components could be determined. For example, the aerosol concentration upstream of the final HEPA filter can thus be measured, which permits one to estimate the life expectancy of this expensive component. The probed testing method is particularly suitable for field evaluations of vacuum cleaners because it uses compact, battery-operated optical particle size spectrometers with internal data storage. Both chamber and probed tests gave the same results for the aerosol filtration efficiency. The probed testing method, however, also gives information on the performance of the individual components in a vacuum cleaner. It also can be used to determine the dust pickup efficiency and the degree of reaerosolization of particles collected in the vacuum cleaner.


MRS Proceedings | 2005

Melting and Oxidation of Nanometer Size Aluminum Powders

Mikhaylo Trunov; Swati Umbrakar; Mirko Schoenitz; Joseph T. Mang; Edward L. Dreizin

Recently, nanometer-sized aluminum powders became available commercially and their use as potential additives to propellants, explosives, and pyrotechnics has attracted significant interest. It has been suggested that very low melting temperatures are expected for nano-sized aluminum powders and that such low melting temperatures could accelerate oxidation and trigger ignition much earlier than for regular, micron-sized aluminum powders. The objective of this work was to investigate experimentally the melting and oxidation behavior of nano-sized aluminum powders. Powder samples with three different nominal sizes of 44, 80, and 121 nm were provided by Nanotechnologies Inc. The particle size distributions were measured using small angle x-ray scattering. Melting was studied by differential scanning calorimetry where the powders were heated from room temperature to 750 °C in argon environment. Thermogravimetric analysis was used to measure the mass increase indicative of oxidation while the powders were heated in an oxygen-argon gas mixture. The measured melting curves were compared to those computed using the experimental particle size distributions and thermodynamic models describing the melting temperature and enthalpy as functions of the particle size. The melting behavior predicted by different models correlated with the experimental observations only qualitatively. Characteristic step-wise oxidation was observed for all studied nanopowders. The observed oxidation behavior was well interpreted considering the recently established kinetics of oxidation of micron-sized aluminum powders. No correlation was found between the melting and oxidation of aluminum nanopowders.


Combustion and Flame | 2005

Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders

Mikhaylo Trunov; Mirko Schoenitz; Xiaoying Zhu; Edward L. Dreizin

Collaboration


Dive into the Mikhaylo Trunov's collaboration.

Top Co-Authors

Avatar

Edward L. Dreizin

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirko Schoenitz

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tiina Reponen

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Atin Adhikari

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Klaus Willeke

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salil Mohan

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge