Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miki Fuse is active.

Publication


Featured researches published by Miki Fuse.


British Journal of Cancer | 2012

Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer

Satoko Kojima; Takeshi Chiyomaru; Kazumori Kawakami; Hirofumi Yoshino; Hideki Enokida; Nijiro Nohata; Miki Fuse; Tomohiko Ichikawa; Yukio Naya; Masayuki Nakagawa; Naohiko Seki

Background:Our recent analyses of miRNA expression signatures showed that miR-1 and miR-133a were significantly reduced in several types of cancer. Interestingly, miR-1 and miR-133a are located on the same chromosomal locus in the human genome. We examined the functional significance of miR-1 and miR-133a in prostate cancer (PCa) cells and identified the novel molecular targets regulated by both miR-1 and miR-133a.Methods and Results:The expression levels of miR-1 and miR-133a were significantly downregulated in PCa compared with non-PCa tissues. Restoration of miR-1 or miR-133a in PC3 and DU145 cells revealed significant inhibition of proliferation, migration, and invasion. Molecular target identification by genome-wide gene expression analysis and luciferase reporter assay showed that purine nucleoside phosphorylase (PNP) was directly regulated by both miRNAs. Silencing of the PNP gene inhibited proliferation, migration, and invasion in both PC3 and DU145 cells. Immunohistochemistry detected positive staining of PNP in PCa specimens.Conclusions:Downregulation of miR-1 and miR-133a was a frequent event in PCa and both function as tumour suppressors. The PNP is a novel target gene of both miRNAs and potentially functions as an oncogene. Therefore, identification of novel molecular networks regulated by miRNAs may provide new insights into the underlying causes of PCa oncogenesis.


Journal of Human Genetics | 2012

Tumor suppressive microRNAs ( miR-222 and miR-31 ) regulate molecular pathways based on microRNA expression signature in prostate cancer

Miki Fuse; Satoko Kojima; Hideki Enokida; Takeshi Chiyomaru; Hirofumi Yoshino; Nijiro Nohata; Takashi Kinoshita; Shinichi Sakamoto; Yukio Naya; Masayuki Nakagawa; Tomohiko Ichikawa; Naohiko Seki

microRNAs (miRNAs) have key roles in human tumorigenesis, tumor progression and metastasis. miRNAs are aberrantly expressed in many human cancers and can function as tumor suppressors or oncogenes that target many cancer-related genes. This study seeks to identify novel miRNA-regulated molecular pathways in prostate cancer (PCa). The miRNA expression signature in clinical specimens of PCa showed that 56 miRNAs were significantly downregulated in PCa compared with non-PCa tissues. We focused on the top four downregulated miRNAs (miR-187, miR-205, miR-222 and miR-31) to investigate their functional significance in PCa cells. Expression levels of these four miRNAs were validated in PCa specimens (15 PCa tissues and 17 non-PCa tissues) to confirm that they were significantly reduced in these PCa tissues. Gain-of-function analysis demonstrated that miR-222 and miR-31 inhibited cell proliferation, invasion and migration in PCa cell lines (PC3 and DU145), suggesting that miR-222 and miR-31 may act as tumor suppressors in PCa. Genome-wide gene expression analysis using miR-222 or miR-31 transfectants to identify the pathways they affect showed that many cancer-related genes are regulated by these miRNAs in PC3 cells. Identification and categorization of the molecular pathways regulated by tumor suppressive miRNAs could provide new information about the molecular mechanisms of PCa tumorigenesis.


Journal of Human Genetics | 2014

The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer

Satoko Kojima; Hideki Enokida; Hirofumi Yoshino; Toshihiko Itesako; Takeshi Chiyomaru; Takashi Kinoshita; Miki Fuse; Rika Nishikawa; Yusuke Goto; Yukio Naya; Masayuki Nakagawa; Naohiko Seki

Our recent study of microRNA (miRNA) expression signature of prostate cancer (PCa) has revealed that the microRNA-143/145 (miR-143/145) cluster is significantly downregulated in cancer tissues, suggesting that these cluster miRNAs are candidate tumor suppressors. The aim of this study was to investigate the functional significance of the miR-143/145 cluster in PCa cells and to identify novel targets regulated by these cluster miRNAs in PCa. Restoration of miR-143 or miR-145 in PCa cell lines (PC3 and DU145) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that Golgi membrane protein 1 (GOLM1) resembling a type II golgi transmembrane protein was a potential target of miR-143/145 cluster target gene. Gene expression studies and luciferase reporter assays showed that GOLM1 was directly regulated by the miR-143/145 cluster. Silencing of GOLM1 resulted in significant inhibition of cell migration and invasion in PCa cells. Furthermore, the expression of GOLM1 was upregulated in cancer tissues by immunohistochemistry. Loss of the tumor-suppressive miR-143/145 cluster enhanced cancer cell migration and invasion in PCa through directly regulating GOLM1. Our data on target genes regulated by the tumor-suppressive miR-143/145 cluster provide new insights into the potential mechanisms of PCa oncogenesis and metastasis.


Journal of Human Genetics | 2013

Epithelial–mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma

Hirofumi Yoshino; Hideki Enokida; Toshihiko Itesako; Shuichi Tatarano; Takashi Kinoshita; Miki Fuse; Satoko Kojima; Masayuki Nakagawa; Naohiko Seki

Our recent studies of microRNA (miRNA) expression signatures demonstrated that the epithelial–mesenchymal transition (EMT)-related microRNA-200 family (miR-200s: miR-200a/b/c, miR-141 and miR-429) were significantly downregulated in renal cell carcinoma (RCC) and putative tumor-suppressive miRNAs in RCC. In this study, our aim was to investigate the functional significance of the miR-200s in cancer cells and to identify novel miR-200s-regulated molecular targets and pathways in RCC. Expression levels of all the miR-200s members were significantly downregulated in human RCC tissues compared with normal renal tissues. Restoration of mature miR-200s in RCC cell line resulted in significant inhibition of cell proliferation and migration, suggesting that miR-200s function as tumor suppressors in RCC. Furthermore, we utilized gene expression analysis and in silico database analysis to identify miR-200s-regulated molecular targets and pathways in RCC. The miR-200s was categorized into two groups, according to their seed sequences, miR-200b/c/429 and miR-200a/141. Our data demonstrated that the ‘Focal adhesion’ and ‘ErbB signaling’ pathways were significantly regulated by miR-200b/c/429 and miR-200a/141, respectively. The identification of novel tumor-suppressive miR-200s-regulated molecular targets and pathways has provided new insights into RCC oncogenesis and metastasis.


International Journal of Oncology | 2012

Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer.

Takeshi Yamasaki; Hirofumi Yoshino; Hideki Enokida; Hideo Hidaka; Takeshi Chiyomaru; Nijiro Nohata; Takashi Kinoshita; Miki Fuse; Naohiko Seki; Masayuki Nakagawa

Our expression signatures of human cancer including bladder cancer (BC) revealed that the expression of microRNA-1 (miR-1) and microRNA-133a (miR-133a) is significantly reduced in cancer cells. In the human genome, miR-1 and miR-133a are located on the same chromosomal region (miR-1-2 and miR-133a-1 on 18q11.2, and miR-1-1 and miR-133a-2 on 20q13.33) called cluster. In this study, we identified the novel molecular targets commonly regulated by miR-1 and miR-133a in BC. Genome-wide molecular target search and luciferase reporter assays showed that prothymosin-α (PTMA) and purine nucleoside phosphorylase (PNP) are directly regulated by miR-1 and miR-133a. Silencing of these two genes significantly inhibited cell proliferation and invasion, and increased apoptosis in BC cells. Immunohistochemistry showed that PTMA expression levels were significantly higher in BC compared to normal bladder epitheliums. PTMA and PNP were identified as new target genes regulated by the miR-1 and miR-133a cluster in BC. These genes may function as oncogenes contributing to cell proliferation and invasion in BC. Tumor suppressive miR-1 and miR-133a-mediated novel molecular targets may provide new insights into the potential mechanisms of BC oncogenesis.


International Journal of Oncology | 2014

Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer

Rika Nishikawa; Yusuke Goto; Satoko Kojima; Hideki Enokida; Takeshi Chiyomaru; Takashi Kinoshita; Shinichi Sakamoto; Miki Fuse; Masayuki Nakagawa; Yukio Naya; Tomohiko Ichikawa; Naohiko Seki

Our recent studies of microRNA (miRNA) expression signatures revealed that microRNA-29s (miR-29s; including miR-29a/b/c) were significantly downregulated in prostate cancer (PCa) and was a putative tumor-suppressive miRNA family in PCa. Herein, we aimed to investigate the functional significance of miR-29 in cancer cells and to identify novel miR-29s-mediated cancer pathways and target genes involved in PCa oncogenesis and metastasis. Restoration of miR-29s in PC3 and DU145 cell lines revealed significant inhibition of cancer cell migration and invasion. To identify miR-29s-mediated molecular pathways and targets, we used gene expression data and in silico database analysis. Our analysis demonstrated that miR-29s modulated the focal adhesion pathway. Moreover, the laminin γ1 (LAMC1) gene was a candidate target of miR-29s regulation. Luciferase reporter assays showed that miR-29s directly regulated LAMC1. Silencing of LAMC1 significantly inhibited cell migration and invasion in cancer cells, and LAMC1 was upregulated in PCa. miR-29s acted as tumor suppressors, contributing to cancer cell migration and invasion and directly targeting laminin signaling. Recognition of tumor-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of PCa oncogenesis and metastasis, and suggests novel therapeutic strategies for treating this disease.


Biochemical and Biophysical Research Communications | 2012

Tumor suppressive microRNA-133a regulates novel targets: Moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma

Takashi Kinoshita; Nijiro Nohata; Miki Fuse; Toyoyuki Hanazawa; Naoko Kikkawa; Lisa Fujimura; Haruko Watanabe-Takano; Yasutoshi Yamada; Hirofumi Yoshino; Hideki Enokida; Masayuki Nakagawa; Yoshitaka Okamoto; Naohiko Seki

Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis.


International Journal of Oncology | 2012

Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma

Takashi Kinoshita; Nijiro Nohata; Haruko Watanabe-Takano; Hirofumi Yoshino; Hideo Hidaka; Lisa Fujimura; Miki Fuse; Takeshi Yamasaki; Hideki Enokida; Masayuki Nakagawa; Toyoyuki Hanazawa; Yoshitaka Okamoto; Naohiko Seki

Our expression signatures of human cancers including head and neck squamous cell carcinoma (HNSCC) demonstrated that downregulation of microRNA-133a (miR-133a) were frequently observed in cancer cells. The restoration of miR-133a in cancer cells revealed that it functions as a tumor suppressor. In this study, we investigated the novel molecular targets of miR-133a in HNSCC cancer cells and its oncogenic function, especially as it contributes to cancer cell migration and invasion. The genome-wide gene expression analysis and bioinformatics study showed that actin-related protein 2/3 complex subunit 5 (ARPC5) is a candidate target of miR-133a. Furthermore, luciferase reporter assay demonstrated that ARPC5 is directly regulated by miR-133a. Silencing of ARPC5 revealed significant inhibition of cell migration and invasion in HNSCC cell lines, SAS, HSC3 and IMC-3. In HSC3 cells, restoration of miR-133a or silencing ARPC5 led to a reorganization of the actin cytoskeleton and a subsequent change in cell morphology to a round, bleb-like shape. The expression levels of ARPC5 were significantly higher in HNSCC tissues than in non-cancer tissues. Immunohistochemistry showed that the levels of ARPC5 expression were significantly higher in invasive cancer cells. ARPC5 contributed to cancer cell migration and invasion in HNSCC and this gene was directly regulated by miR-133a. Our analysis of novel tumor-suppressive miR‑133a-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis.


The Prostate | 2011

SWAP70, actin‐binding protein, function as an oncogene targeting tumor‐suppressive miR‐145 in prostate cancer

Takeshi Chiyomaru; Shuichi Tatarano; Kazumori Kawakami; Hideki Enokida; Hirofumi Yoshino; Nijiro Nohata; Miki Fuse; Naohiko Seki; Masayuki Nakagawa

MiR‐145 is down‐regulated in various human cancers. We previously demonstrated that some actin‐binding proteins were targeted by several microRNAs (miRNAs), including miR‐145, in bladder and prostate cancer (CaP). The aim of this study is to determine a novel oncogenic gene targeted by miR‐145 by focusing on actin‐binding proteins in CaP.


FEBS Letters | 2014

Tumour‐suppressive microRNA‐224 inhibits cancer cell migration and invasion via targeting oncogenic TPD52 in prostate cancer

Yusuke Goto; Rika Nishikawa; Satoko Kojima; Takeshi Chiyomaru; Hideki Enokida; Satoru Inoguchi; Takashi Kinoshita; Miki Fuse; Shinichi Sakamoto; Masayuki Nakagawa; Yukio Naya; Tomohiko Ichikawa; Naohiko Seki

Our recent study of the microRNA expression signature of prostate cancer (PCa) revealed that microRNA‐224 (miR‐224) is significantly downregulated in PCa tissues. Here, we found that restoration of miR‐224 significantly inhibits PCa cell migration and invasion. Additionally, we found that oncogenic TPD52 is a direct target of miR‐224 regulation. Silencing of the TPD52 gene significantly inhibits cancer cell migration and invasion. Moreover, TPD52 expression is upregulated in cancer tissues and negatively correlates with miR‐224 expression. We conclude that loss of tumour‐suppressive miR‐224 enhances cancer cell migration and invasion in PCa through direct regulation of oncogenic TPD52.

Collaboration


Dive into the Miki Fuse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge