Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miki Hiasa is active.

Publication


Featured researches published by Miki Hiasa.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Identification of a vesicular aspartate transporter

Takaaki Miyaji; Noriko Echigo; Miki Hiasa; Shigenori Senoh; Hiroshi Omote; Yoshinori Moriyama

Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H+/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects.


Xenobiotica | 2008

Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics.

Yoshinori Moriyama; Miki Hiasa; Takuya Matsumoto; Hiroshi Omote

1. Multidrug and toxic compound extrusion (MATE)-type transporters, which were first identified as a bacterial drug transporter family, are present in almost all prokaryotes and eukaryotes, and are thus one of the mostly conserved transporter families in nature. 2. Recently, a mammalian MATE transporter was shown to be a long hypothesized electroneutral H+/organic cation exporter that is responsible for the excretion of metabolic waste products and xenobiotics at renal brush border membranes and bile canaliculi. Plant MATE-type transporters are involved in the detoxification of metals and secondary metabolites such as phenols through their vesicular storage or extrusion at the plasma membrane. 3. Thus, MATE transporters are involved in one of the basic mechanisms that maintain homeostasis through the excretion of metabolic waste products and xenobiotics in nature.


Journal of Biological Chemistry | 2010

Type 1 sodium-dependent phosphate transporter (SLC17A1 protein) is a Cl--dependent urate exporter

Masafumi Iharada; Takaaki Miyaji; Takahiro Fujimoto; Miki Hiasa; Naohiko Anzai; Hiroshi Omote; Yoshinori Moriyama

SLC17A1 protein (NPT1) is the first identified member of the SLC17 phosphate transporter family and mediates the transmembrane cotransport of Na+/Pi in oocytes. Although this protein is believed to be a renal polyspecific anion exporter, its transport properties are not well characterized. Here, we show that proteoliposomes containing purified SLC17A1 transport various organic anions such as p-aminohippuric acid and acetylsalicylic acid (aspirin) in an inside positive membrane potential (Δψ)-dependent manner. We found that NPT1 also transported urate. The uptake characteristics were similar to that of SLC17 members in its Cl− dependence and inhibitor sensitivity. When arginine 138, an essential amino acid residue for members of the SLC17 family such as the vesicular glutamate transporter, was specifically mutated to alanine, the resulting mutant protein was inactive in Δψ-dependent anion transport. Heterologously expressed and purified human NPT1 carrying the single nucleotide polymorphism mutation that is associated with increased risk of gout in humans exhibited 32% lower urate transport activity compared with the wild type protein. These results strongly suggested that NPT1 is a Cl−-dependent polyspecific anion exporter involved in urate excretion under physiological conditions.


Cerebral Cortex | 2012

Functional and Anatomical Identification of a Vesicular Transporter Mediating Neuronal ATP Release

Max Larsson; Keisuke Sawada; Cecilie Morland; Miki Hiasa; Lasse Ormel; Yoshinori Moriyama; Vidar Gundersen

ATP is known to be coreleased with glutamate at certain central synapses. However, the nature of its release is controversial. Here, we demonstrate that ATP release from cultured rat hippocampal neurons is sensitive to RNAi-mediated knockdown of the recently identified vesicular nucleotide transporter (VNUT or SLC17A9). In the intact brain, light microscopy showed particularly strong VNUT immunoreactivity in the cerebellar cortex, the olfactory bulb, and the hippocampus. Using immunoelectron microscopy, we found VNUT immunoreactivity colocalized with synaptic vesicles in excitatory and inhibitory terminals in the hippocampal formation. Moreover, VNUT immunolabeling, unlike that of the vesicular glutamate transporter VGLUT1, was enriched in preterminal axons and present in postsynaptic dendritic spines. Immunoisolation of synaptic vesicles indicated presence of VNUT in a subset of VGLUT1-containing vesicles. Thus, we conclude that VNUT mediates transport of ATP into synaptic vesicles of hippocampal neurons, thereby conferring a purinergic phenotype to these cells.


The International Journal of Biochemistry & Cell Biology | 2011

Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter.

Toshinori Komatsu; Miki Hiasa; Takaaki Miyaji; Takuji Kanamoto; Takuya Matsumoto; Masato Otsuka; Yoshinori Moriyama; Hiroshi Omote

Human multidrug and toxic compound extrusion 2 (hMATE2) is a kidney-specific isoform of hMATE1, an exporter of toxic organic cations (OCs) of exogenous and endogenous origins at the final excretion step in the kidneys and liver (Otsuka et al., 2005), and contains a splicing variant, MATE2K, that has an exon of hMATE2 deleted (Masuda et al., 2006). In the present study, we characterized the degree of expression and the transport properties of hMATE2. Quantitative PCR analysis with probes specific for hMATE2 indicated the presence of hMATE2 mRNA in the kidneys, which corresponded to 39% of total mRNA encoding both hMATE2 and hMATE2K. hMATE2-specific antibodies immunostained the renal urinary tubules. Upon expression in HEK293 cells, hMATE2 was localized in intracellular vesicular structures, and thus transport activity of tetraethylammonium (TEA), a typical substrate for MATE transporters, by the cells was not detected. The hMATE2 protein was purified and reconstituted into liposomes. An artificially imposed pH gradient (ΔpH) across the proteoliposomal membrane drove the uptake of TEA. Dissipation of ΔpH by ammonium sulfate effectively inhibited the TEA uptake, while that of the membrane potential by valinomycin had little effect. The profiles of cis-inhibition of TEA transport by hMATE2 and hMATE2K are similar to each other. Thus, both hMATE2 and hMATE2K equally operate in the human kidneys to extrude OCs into the urine.


Biochemical and Biophysical Research Communications | 2009

Identification of the vesicular nucleotide transporter (VNUT) in taste cells

Ken Iwatsuki; Reiko Ichikawa; Miki Hiasa; Yoshinori Moriyama; Kunio Torii; Hisayuki Uneyama

Taste cells are chemosensory epithelial cells that sense distinct taste qualities. It is the type II taste cell that express G-protein coupled receptors to sense either umami, sweet, or bitter compounds. Whereas several reports have suggested involvement of ATP in taste signal transduction, there is a paucity of molecular information about how ATP is stored and being released. The recent discovery of a novel vesicular nucleotide transporter (VNUT) led us to examine whether VNUT exist in the taste tissue where ATP is to be released for taste signal transmission. Here, we report that VNUT is selectively expressed in type II cell but not in type III taste cell. In addition, we show that during taste bud development VNUT expression is always accompanied by the expression of type II taste cell markers. Our results, together with previous studies, strongly suggest that VNUT plays a role in type II taste cell.


Journal of Biological Chemistry | 2009

Vesicular Inhibitory Amino Acid Transporter Is a Cl−/γ-Aminobutyrate Co-transporter

Narinobu Juge; Akiko Muroyama; Miki Hiasa; Hiroshi Omote; Yoshinori Moriyama

The vesicular inhibitory amino acid transporter (VIAAT) is a synaptic vesicle protein responsible for the vesicular storage of γ-aminobutyrate (GABA) and glycine which plays an essential role in GABAergic and glycinergic neurotransmission. The transport mechanism of VIAAT remains largely unknown. Here, we show that proteoliposomes containing purified VIAAT actively took up GABA upon formation of membrane potential (Δψ) (positive inside) but not ΔpH. VIAAT-mediated GABA uptake had an absolute requirement for Cl− and actually accompanied Cl− movement. Kinetic analysis indicated that one GABA molecule and two Cl− equivalents were transported during one transport cycle. VIAAT in which Glu213 was specifically mutated to alanine completely lost the ability to take up both GABA and Cl−. Essentially the same results were obtained with glycine, another substrate of VIAAT. These results demonstrated that VIAAT is a vesicular Cl− transporter that co-transports Cl− with GABA or glycine in a Δψ dependent manner. It is concluded that Cl− plays an essential role in vesicular storage of GABA and glycine.


American Journal of Physiology-cell Physiology | 2013

Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules

Juliana I. Sesma; Silvia M. Kreda; Seiko F. Okada; Catharina van Heusden; Lama Moussa; Lisa C. Jones; Wanda K. O'Neal; Natsuko Togawa; Miki Hiasa; Yoshinori Moriyama; Eduardo R. Lazarowski

Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.


Scientific Reports | 2015

Identification of a mammalian vesicular polyamine transporter

Miki Hiasa; Takaaki Miyaji; Yuka Haruna; Tomoya Takeuchi; Yuika Harada; Sawako Moriyama; Akitsugu Yamamoto; Hiroshi Omote; Yoshinori Moriyama

Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H+. SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT).


Scientific Reports | 2015

Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity.

Shohei Sakamoto; Takaaki Miyaji; Miki Hiasa; Reiko Ichikawa; Akira Uematsu; Ken Iwatsuki; Atsushi Shibata; Hisayuki Uneyama; Ryoichi Takayanagi; Akitsugu Yamamoto; Hiroshi Omote; Masatoshi Nomura; Yoshinori Moriyama

Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut−/−) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut−/− mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut−/− mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut−/− mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.

Collaboration


Dive into the Miki Hiasa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Iwatsuki

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge