Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miki Kasai is active.

Publication


Featured researches published by Miki Kasai.


Clinical Infectious Diseases | 2001

Fusariosis Associated with Pathogenic Fusarium Species Colonization of a Hospital Water System: A New Paradigm for the Epidemiology of Opportunistic Mold Infections

Elias Anaissie; Robert T. Kuchar; John H. Rex; Andrea Francesconi; Miki Kasai; Frank-Michael C. Müller; Lozano-Chiu Mario; Richard C. Summerbell; M. Cecilia Dignani; Stephen J. Chanock; Thomas J. Walsh

We sought the reservoir of Fusarium species in a hospital with cases of known fusarial infections. Cultures of samples from patients and the environment were performed and evaluated for relatedness by use of molecular methods. Fusarium species was recovered from 162 (57%) of 283 water system samples. Of 92 sink drains tested, 72 (88%) yielded Fusarium solani; 12 (16%) of 71 sink faucet aerators and 2 (8%) of 26 shower heads yielded Fusarium oxysporum. Fusarium solani was isolated from the hospital water tank. Aerosolization of Fusarium species was documented after running the showers. Molecular biotyping revealed multiple distinct genotypes among the isolates from the environment and patients. Eight of 20 patients with F. solani infections had isolates with a molecular match with either an environmental isolate (n=2) or another patient isolate (n=6). The time interval between the 2 matched patient-environment isolates pairs was 5 and 11 months, and 2, 4, and 5.5 years for the 3 patient-patient isolate pairs. The water distribution system of a hospital was identified as a reservoir of Fusarium species.


Clinical Infectious Diseases | 2002

Pathogenic Aspergillus Species Recovered from a Hospital Water System: A 3-Year Prospective Study

Elias Anaissie; Shawna L. Stratton; M. Cecilia Dignani; Richard C. Summerbell; John H. Rex; Thomas P. Monson; Trey Spencer; Miki Kasai; Andrea Francesconi; Thomas J. Walsh

Nosocomial aspergillosis, a life-threatening infection in immunocompromised patients, is thought to be caused primarily by Aspergillus organisms in the air. A 3-year prospective study of the air, environmental surfaces, and water distribution system of a hospital in which there were known cases of aspergillosis was conducted to determine other possible sources of infection. Aspergillus species were found in the hospital water system. Significantly higher concentrations of airborne aspergillus propagules were found in bathrooms, where water use was highest (2.95 colony-forming units [cfu]/m(3)) than in patient rooms (0.78 cfu/m(3); P=.05) and in hallways (0.61 cfu/m(3); P=.03). A correlation was found between the rank orders of Aspergillus species recovered from hospital water and air. Water from tanks yielded higher counts of colony-forming units than did municipal water. An isolate of Aspergillus fumigatus recovered from a patient with aspergillosis was genotypically identical to an isolate recovered from the shower wall in the patients room. In addition to the air, hospital water systems may be a source of nosocomial aspergillosis.


The Journal of Infectious Diseases | 2007

Pathogenesis of Aspergillus fumigatus and the Kinetics of Galactomannan in an In Vitro Model of Early Invasive Pulmonary Aspergillosis: Implications for Antifungal Therapy

William W. Hope; Michael J. Kruhlak; Caron A. Lyman; Ruta Petraitiene; Vidmantas Petraitis; Andrea Francesconi; Miki Kasai; Diana Mickiene; Tin Sein; Joanne Peter; Amy M. Kelaher; Johanna E. Hughes; Margaret P. Cotton; Catherine J. Cotten; John Bacher; Sanjay Tripathi; Louis Bermudez; Timothy K. Maugel; Patricia M. Zerfas; John R. Wingard; George L. Drusano; Thomas J. Walsh

BACKGROUND Little is known about the pathogenesis of invasive pulmonary aspergillosis and the relationship between the kinetics of diagnostic markers and the outcome of antifungal therapy. METHODS An in vitro model of the human alveolus, consisting of a bilayer of human alveolar epithelial and endothelial cells, was developed. An Aspergillus fumigatus strain expressing green fluorescent protein was used. Invasion of the cell bilayer was studied using confocal and electron microscopy. The kinetics of culture, polymerase chain reaction, and galactomannan were determined. Galactomannan was used to measure the antifungal effect of macrophages and amphotericin B. A mathematical model was developed, and results were bridged to humans. RESULTS A. fumigatus penetrated the cellular bilayer 14-16 h after inoculation. Galactomannan levels were inextricably tied to fungal invasion and were a robust measure of the antifungal effect of macrophages and amphotericin B. Neither amphotericin nor macrophages alone was able to suppress the growth of A. fumigatus; rather, the combination was required. Monte Carlo simulations showed that human dosages of amphotericin B of at least 0.6 mg/kg were required to achieve adequate drug exposure. CONCLUSIONS This model provides a strategy by which relationships among pathogenesis, immunological effectors, and antifungal drug therapy for invasive pulmonary aspergillosis may be further understood.


Journal of Clinical Microbiology | 2006

Characterization and Comparison of Galactomannan Enzyme Immunoassay and Quantitative Real-Time PCR Assay for Detection of Aspergillus fumigatus in Bronchoalveolar Lavage Fluid from Experimental Invasive Pulmonary Aspergillosis

Andrea Francesconi; Miki Kasai; Ruta Petraitiene; Vidmantas Petraitis; Amy M. Kelaher; Robert L. Schaufele; William W. Hope; Yvonne R. Shea; John Bacher; Thomas J. Walsh

ABSTRACT Bronchoalveolar lavage (BAL) is widely used for evaluation of patients with suspected invasive pulmonary aspergillosis (IPA). However, the diagnostic yield of BAL for detection of IPA by culture and direct examination is limited. Earlier diagnosis may be facilitated by assays that can detect Aspergillus galactomannan antigen or DNA in BAL fluid. We therefore characterized and compared the diagnostic yields of a galactomannan enzyme immunoassay (GM EIA), quantitative real-time PCR (qPCR), and quantitative cultures in experiments using BAL fluid from neutropenic rabbits with experimentally induced IPA defined as microbiologically and histologically evident invasion. The qPCR assay targeted the rRNA gene complex of Aspergillus fumigatus. The GM EIA and qPCR assay were characterized by receiver operator curve analysis. With an optimal cutoff of 0.75, the GM EIA had a sensitivity and specificity of 100% in untreated controls. A decline in sensitivity (92%) was observed when antifungal therapy (AFT) was administered. The optimal cutoff for qPCR was a crossover of 36 cycles, with sensitivity and specificity of 80% and 100%, respectively. The sensitivity of qPCR also decreased with AFT to 50%. Quantitative culture of BAL had a sensitivity of 46% and a specificity of 100%. The sensitivity of quantitative culture decreased with AFT to 16%. The GM EIA and qPCR assay had greater sensitivity than culture in detection of A. fumigatus in BAL fluid in experimentally induced IPA (P ± 0.04). Use of the GM EIA and qPCR assay in conjunction with culture-based diagnostic methods applied to BAL fluid could facilitate accurate diagnosis and more-timely initiation of specific therapy.


Antimicrobial Agents and Chemotherapy | 2009

Combination Therapy in Treatment of Experimental Pulmonary Aspergillosis: In Vitro and In Vivo Correlations of the Concentration- and Dose- Dependent Interactions between Anidulafungin and Voriconazole by Bliss Independence Drug Interaction Analysis

Vidmantas Petraitis; Ruta Petraitiene; William W. Hope; Joseph Meletiadis; Diana Mickiene; Johanna E. Hughes; Margaret P. Cotton; Theodouli Stergiopoulou; Miki Kasai; Andrea Francesconi; Robert L. Schaufele; Tin Sein; Nilo A. Avila; John Bacher; Thomas J. Walsh

ABSTRACT We studied the antifungal activity of anidulafungin (AFG) in combination with voriconazole (VRC) against experimental invasive pulmonary aspergillosis (IPA) in persistently neutropenic rabbits and further explored the in vitro and in vivo correlations by using Bliss independence drug interaction analysis. Treatment groups consisted of those receiving AFG at 5 (AFG5 group) and 10 (AFG10 group) mg/kg of body weight/day, VRC at 10 mg/kg every 8 h (VRC group), AFG5 plus VRC (AFG5+VRC group), and AFG10 plus VRC (AFG10+VRC group) and untreated controls. Survival throughout the study was 60% for the AFG5+VRC group, 50% for the VRC group, 27% for the AFG10+VRC group, 22% for the AFG5 group, 18% for the AFG10 group, and 0% for control rabbits (P < 0.001). There was a significant reduction of organism-mediated pulmonary injury, measured by infarct scores, lung weights, residual fungal burdens, and galactomannan indexes, in AFG5+VRC-treated rabbits versus those treated with AFG5 and VRC alone (P < 0.05). In comparison, AFG10+VRC significantly lowered only infarct scores and lung weights in comparison to those of AFG10-treated animals (P < 0.05). AFG10+VRC showed no significant difference in other outcome variables. Significant Bliss synergy was found in vivo between AFG5 and VRC, with observed effects being 24 to 30% higher than expected levels if the drugs were acting independently. These synergistic interactions were also found between AFG and VRC in vitro. However, for AFG10+VRC, only independence and antagonism were observed among the outcome variables. We concluded that the combination of AFG with VRC in treatment of experimental IPA in persistently neutropenic rabbits was independent to synergistic at a dosage of 5 mg/kg/day but independent to antagonistic at 10 mg/kg/day, as assessed by Bliss independence analysis, suggesting that higher dosages of an echinocandin may be deleterious to the combination.


Journal of Clinical Microbiology | 2003

Development and Validation of a Quantitative Real-Time PCR Assay Using Fluorescence Resonance Energy Transfer Technology for Detection of Aspergillus fumigatus in Experimental Invasive Pulmonary Aspergillosis

Cathal E. O'Sullivan; Miki Kasai; Andrea Francesconi; Vidmantas Petraitis; Ruta Petraitiene; Amy M. Kelaher; Alia A. Sarafandi; Thomas J. Walsh

ABSTRACT Invasive pulmonary aspergillosis (IPA) is a frequently fatal infection in immunocompromised patients that is difficult to diagnose. Present methods for detection of Aspergillus spp. in bronchoalveolar lavage (BAL) fluid and in tissue vary in sensitivity and specificity. We therefore developed an A. fumigatus-specific quantitative real-time PCR-based assay utilizing fluorescent resonance energy transfer (FRET) technology. We compared the assay to quantitative culture of BAL fluid and lung tissue in a rabbit model of experimental IPA. Using an enzymatic and high-speed mechanical cell wall disruption protocol, DNA was extracted from samples of BAL fluid and lung tissues from noninfected and A. fumigatus-infected rabbits. A unique primer set amplified internal transcribed spacer regions (ITS) 1 and 2 of the rRNA operon. Amplicon was detected using FRET probes targeting a unique region of ITS1. Quantitation of A. fumigatus DNA was achieved by use of external standards. The presence of PCR inhibitors was determined by use of a unique control plasmid. The analytical sensitivity of the assay was ≤10 copies of target DNA. No cross-reactivity occurred with other medically important filamentous fungi. The assay results correlated with pulmonary fungal burden as determined by quantitative culture (r = 0.72, Spearman rank correlation; P ≤ 0.0001). The mean number of genome equivalents detected in untreated animals was 3.86 log10 (range, 0.86 to 6.39 log10) in tissue. There was a 3.53-log10 mean reduction of A. fumigatus genome equivalents in animals treated with amphotericin B (AMB) (95% confidence interval, 3.38 to 3.69 log10; P ≤ 0.0001), which correlated with the reduction of residual fungal burden in lung tissue measured in terms of log10 CFU/gram. The enhanced quantitative sensitivity of the real-time PCR assay was evidenced by detection of A. fumigatus genome in infarcted culture-negative lobes, by a greater number of mean genome equivalents compared to the number of CFU per gram in tissue and BAL fluid, and by superior detection of therapeutic response to AMB in BAL fluid compared to culture. This real-time PCR assay using FRET technology is highly sensitive and specific in detecting A. fumigatus DNA from BAL fluid and lung tissue in experimental IPA.


Journal of Clinical Microbiology | 2008

Detection of a Molecular Biomarker for Zygomycetes by Quantitative PCR Assays of Plasma, Bronchoalveolar Lavage, and Lung Tissue in a Rabbit Model of Experimental Pulmonary Zygomycosis

Miki Kasai; Susan M. Harrington; Andrea Francesconi; Vidmantas Petraitis; Ruta Petraitiene; Mara G. Beveridge; Tena A. Knudsen; Jeffery Milanovich; Margaret P. Cotton; Johanna E. Hughes; Robert L. Schaufele; Tin Sein; John Bacher; Patrick R. Murray; Dimitrios P. Kontoyiannis; Thomas J. Walsh

ABSTRACT We developed two real-time quantitative PCR (qPCR) assays, targeting the 28S rRNA gene, for the diagnosis of zygomycosis caused by the most common, clinically significant Zygomycetes. The amplicons of the first qPCR assay (qPCR-1) from Rhizopus, Mucor, and Rhizomucor species were distinguished through melt curve analysis. The second qPCR assay (qPCR-2) detected Cunninghamella species using a different primer/probe set. For both assays, the analytic sensitivity for the detection of hyphal elements from germinating sporangiospores in bronchoalveolar lavage (BAL) fluid and lung tissue homogenates from rabbits was 1 to 10 sporangiospores/ml. Four unique and clinically applicable models of invasive pulmonary zygomycosis served as surrogates of human infections, facilitating the validation of these assays for potential diagnostic utility. For qPCR-1, 5 of 98 infarcted lung specimens were positive by qPCR and negative by quantitative culture (qCx). None were qCx positive only. Among 23 BAL fluid samples, all were positive by qPCR, while 22 were positive by qCx. qPCR-1 detected Rhizopus and Mucor DNA in 20 (39%) of 51 serial plasma samples as early as day 1 postinoculation. Similar properties were observed for qPCR-2, which showed greater sensitivity than qCx for BAL fluid (100% versus 67%; P = 0.04; n = 15). The assay detected Cunninghamella DNA in 18 (58%) of 31 serial plasma samples as early as day 1 postinoculation. These qPCR assays are sensitive and specific for the detection of Rhizopus, Mucor, Rhizomucor, and Cunninghamella species and can be used for the study and detection of infections caused by these life-threatening pathogens.


Infection and Immunity | 2005

Expression of Genes Encoding Innate Host Defense Molecules in Normal Human Monocytes in Response to Candida albicans

Hee Sup Kim; Eun Hwa Choi; Javed Khan; Emmanuel Roilides; Andrea Francesconi; Miki Kasai; Tin Sein; Robert L. Schaufele; Sakurai K; Chang Gue Son; Braden T. Greer; Stephen J. Chanock; Caron A. Lyman; Thomas J. Walsh

ABSTRACT Little is known about the regulation and coordinated expression of genes involved in the innate host response to Candida albicans. We therefore examined the kinetic profile of gene expression of innate host defense molecules in normal human monocytes infected with C. albicans using microarray technology. Freshly isolated peripheral blood monocytes from five healthy donors were incubated with C. albicans for 0 to 18 h in parallel with time-matched uninfected control cells. RNA from monocytes was extracted and amplified for microarray analysis, using a 42,421-gene cDNA chip. Expression of genes encoding proinflammatory cytokines, including tumor necrosis factor alpha, interleukin 1 (IL-1), IL-6, and leukemia inhibitory factor, was markedly enhanced during the first 6 h and coincided with an increase in phagocytosis. Expression of these genes returned to near baseline by 18 h. Genes encoding chemokines, including IL-8; macrophage inflammatory proteins 1, 3, and 4; and monocyte chemoattractant protein 1, also were strongly up-regulated, with peak expression at 4 to 6 h, as were genes encoding chemokine receptors CCR1, CCR5, CCR7, and CXCR5. Expression of genes whose products may protect monocyte viability, such as BCL2-related protein, metallothioneins, CD71, and SOCS3, was up-regulated at 4 to 6 h and remained elevated throughout the 18-h time course. On the other hand, expression of genes encoding T-cell-regulatory molecules (e.g., IL-12, gamma interferon, and transforming growth factor β) was not significantly affected during the 18-h incubation. Moreover, genes encoding IL-15, the IL-13 receptor (IL-13Ra1), and CD14 were suppressed during the 18-h exposure to C. albicans. Thus, C. albicans is a potent inducer of a dynamic cascade of expression of genes whose products are related to the recruitment, activation, and protection of neutrophils and monocytes.


Journal of Clinical Microbiology | 2003

Candida tropicalis in a Neonatal Intensive Care Unit: Epidemiologic and Molecular Analysis of an Outbreak of Infection with an Uncommon Neonatal Pathogen

Emmanuel Roilides; Evangelia Farmaki; Joanna Evdoridou; Andrea Francesconi; Miki Kasai; Joanna Filioti; Maria Tsivitanidou; Danai Sofianou; George Kremenopoulos; Thomas J. Walsh

ABSTRACT From June to July 1998, two episodes of Candida tropicalis fungemia occurred in the Aristotle University neonatal intensive care unit (ICU). To investigate this uncommon event, a prospective study of fungal colonization and infection was conducted. From December 1998 to December 1999, surveillance cultures of the oral cavities and perinea of the 593 of the 781 neonates admitted to the neonatal ICU who were expected to stay for >7 days were performed. Potential environmental reservoirs and possible risk factors for acquisition of C. tropicalis were searched for. Molecular epidemiologic studies by two methods of restriction fragment length polymorphism analysis and two methods of random amplified polymorphic DNA analysis were performed. Seventy-two neonates were colonized by yeasts (12.1%), of which 30 were colonized by Candida albicans, 17 were colonized by C. tropicalis, and 5 were colonized by Candida parapsilosis. From December 1998 to December 1999, 10 cases of fungemia occurred; 6 were due to C. parapsilosis, 2 were due to C. tropicalis, 1 was due to Candida glabrata, and 1 was due to Trichosporon asahii (12.8/1,000 admissions). Fungemia occurred more frequently in colonized than in noncolonized neonates (P < 0.0001). Genetic analysis of 11 colonization isolates and the two late blood isolates of C. tropicalis demonstrated two genotypes. One blood isolate and nine colonization isolates belonged to a single type. The fungemia/colonization ratio of C. parapsilosis (3/5) was greater than that of C. tropicalis (2/17, P = 0.05), other non-C. albicans Candida spp. (1/11, P = 0.02), or C. albicans (0/27, P = 0.05). Extensive environmental cultures revealed no common source of C. tropicalis or C. parapsilosis. There was neither prophylactic use of azoles nor other risk factors found for acquisition of C. tropicalis except for total parenteral nutrition. A substantial risk of colonization by non-C. albicans Candida spp. in the neonatal ICU may lead to a preponderance of C. tropicalis as a significant cause of neonatal fungemia.


Journal of Clinical Microbiology | 2006

Use of Quantitative Real-Time PCR To Study the Kinetics of Extracellular DNA Released from Candida albicans, with Implications for Diagnosis of Invasive Candidiasis

Miki Kasai; Andrea Francesconi; Ruta Petraitiene; Vidmantas Petraitis; Amy M. Kelaher; Hee Sup Kim; Joseph Meletiadis; Tin Sein; John Bacher; Thomas J. Walsh

ABSTRACT Quantitative real-time PCR (qPCR) is considered one of the most sensitive methods to detect low levels of DNA from pathogens in clinical samples. To improve the design of qPCR for the detection of deeply invasive candidiasis, we sought to develop a more comprehensive understanding of the kinetics of DNA released from Candida albicans in vitro and in vivo. We developed a C. albicans-specific assay targeting the rRNA gene complex and studied the kinetics of DNA released from C. albicans alone, in the presence of human blood monocytes (H-MNCs), and in the bloodstream of rabbits with experimental disseminated candidiasis. The analytical qPCR assay was highly specific and sensitive (10 fg). Cells of C. albicans incubated in Hanks balanced salt solution (±10% bovine serum albumin [BSA]) or RPMI (±10% BSA) showed a significant release of DNA at T equal to 24 h compared to T equal to 0 h (P ≤ 0.01). C. albicans incubated with H-MNCs exhibited a greater release of DNA than C. albicans cells alone over 24 h (P = 0.0001). Rabbits with disseminated candidiasis showed a steady increase of detectable DNA levels in plasma as disease progressed. Plasma cultures showed minimal growth of C. albicans, demonstrating that DNA extracted from plasma reflected fungal cell-free DNA. In summary, these studies of the kinetics of DNA release by C. albicans collectively demonstrate that cell-free fungal DNA is released into the bloodstream of hosts with disseminated candidiasis, that phagocytic cells may play an active role in increasing this release over time, and that plasma is a suitable blood fraction for the detection of C. albicans DNA.

Collaboration


Dive into the Miki Kasai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Francesconi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Bacher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Johanna E. Hughes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Margaret P. Cotton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert L. Schaufele

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Chanock

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tin Sein

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge