Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miki Sugimoto is active.

Publication


Featured researches published by Miki Sugimoto.


The Plant Cell | 2009

Atg26-Mediated Pexophagy Is Required for Host Invasion by the Plant Pathogenic Fungus Colletotrichum orbiculare

Makoto Asakura; Sachiko Ninomiya; Miki Sugimoto; Masahide Oku; Shun-ichi Yamashita; Tetsuro Okuno; Yasuyoshi Sakai; Yoshitaka Takano

The number of peroxisomes in a cell can change rapidly in response to changing environmental and physiological conditions. Pexophagy, a type of selective autophagy, is involved in peroxisome degradation, but its physiological role remains to be clarified. Here, we report that cells of the cucumber anthracnose fungus Colletotrichum orbiculare undergo peroxisome degradation as they infect host plants. We performed a random insertional mutagenesis screen to identify genes involved in cucumber pathogenesis by C. orbiculare. In this screen, we isolated a homolog of Pichia pastoris ATG26, which encodes a sterol glucosyltransferase that enhances pexophagy in this methylotrophic yeast. The C. orbiculare atg26 mutant developed appressoria but exhibited a specific defect in the subsequent host invasion step, implying a relationship between pexophagy and fungal phytopathogenicity. Consistent with this, its peroxisomes are degraded inside vacuoles, accompanied by the formation of autophagosomes during infection-related morphogenesis. The autophagic degradation of peroxisomes was significantly delayed in the appressoria of the atg26 mutant. Functional domain analysis of Atg26 suggested that both the phosphoinositide binding domain and the catalytic domain are required for pexophagy and pathogenicity. In contrast with the atg26 mutant, which is able to form appressoria, the atg8 mutant, which is defective in the entire autophagic pathway, cannot form normal appressoria in the earlier steps of morphogenesis. These results indicate a specific function for Atg26-enhanced pexophagy during host invasion by C. orbiculare.


Theriogenology | 2000

Development of infantile rat ovaries autotransplanted after cryopreservation by vitrification.

Miki Sugimoto; S. Maeda; Noboru Manabe; Hajime Miyamoto

We cryopreserved infantile rat ovaries by vitrification and assessed their viability by autotransplantation. Hemilateral ovarian transplantation was performed on rats on postnatal Days 10 to 12. The left ovary of each rat was dissected out, cryopreserved by vitrification using a modified vitrification solution (VS1), and then autotransplanted under the capsule of the right kidney. The right ovary of each rat was removed. For the control, the left ovary was dissected out from each rat and was immediately transplanted by the same procedure, without cryopreservation. Rats were nursed until weaning, and then the day of vaginal opening, estrous cyclicity from the day of vaginal opening until postnatal Day 84, and histology of ovarian grafts at postnatal Day 84 were examined. The time course of development of endocrine function of cryopreserved grafts was similar to that of fresh grafts. In ovarian transplants recovered on postnatal Day 84, antral follicles and corpora lutea (CL) were observed in addition to small follicles, although the number of antral follicles in cryopreserved grafts was smaller than in the fresh grafts. These results indicate that cryopreservation of ovarian tissue by vitrification can be used for the preservation of fertility and endocrine function of ovaries.


Biology of Reproduction | 2007

Identification, Isolation, and In Vitro Culture of Porcine Gonocytes

Sandeep Goel; Miki Sugimoto; Naojiro Minami; Masayasu Yamada; Shinichi Kume; Hiroshi Imai

Abstract Gonocytes are primitive germ cells that reside in the seminiferous tubules of neonatal testes and give rise to spermatogonia, thereby initiating spermatogenesis. Due to a lack of specific markers, the isolation and culture of these cells has proven to be difficult in the pig. In the present study, we show that a lectin, Dolichos biflorus agglutinin (DBA), which has specific affinity for primordial germ cells (PCGs) in the genital ridge, binds specifically to gonocytes in neonatal pig testes. The specific affinity of DBA for germ cells was progressively lost with age. This suggests that DBA binds strongly to primitive germ cells, such as gonocytes, weakly to primitive spermatogonia, and not at all to spermatogonia. The presence of alkaline phosphatase (AP) activity in the germ cells of neonatal pig testis confirmed the existence of primitive germ cells. Gonocytes from neonatal pig testis were purified, and a cell population that consisted of approximately 70% gonocytes was obtained, as indicated by the DBA binding assay. Purified gonocytes were cultured in DMEM/F12 supplemented with 10% FBS in the absence of any specific growth factors for 7 days. The cells remained viable and proliferated actively in culture. Initially, the gonocytes grew as focal colonies that transformed to three-dimensional colonies by 7 days of culture. Cultured germ cells expressed SSEA-1, a marker for embryonic stem (ES) cells, and were negative for the expression of somatic cell markers. These results should help to establish a male germ cell line that could be used for studying spermatogenesis in vitro and for genetic modification of pigs.


Cellular and Molecular Life Sciences | 1996

Apoptosis occurs in granulosa cells but not cumulus cells in the atretic antral follicles in pig ovaries

Noboru Manabe; Yuzuru Imai; H. Ohno; Y. Takahagi; Miki Sugimoto; Hajime Miyamoto

The porcine antral follicles, 3–6 mm in diameter, were dissected from the ovaries of mature pigs, and then granulosa and cumulus cells were isolated from each follicle. In atretic follicles, high activity of neutral Ca2+/Mg2+-dependent endonuclease and DNA ladder formation, estimated by electrophoresis, were noted in granulosa cells but not in cumulus cells. Extremely low activity of the endonuclease and no DNA ladder formation were observed in both types of cells obtained from healthy follicles. Moreover, apoptotic cells were observed histochemically among granulosa cells only. A good correlation (r=0.987) between the endonuclease activity of granulosa cells and the progesterone/estradiol ratio of follicular fluid in each follicle was found. These results suggest that apoptosis occurs in granulosa cells but not cumulus cells in the atretic antral follicles in pigs.


British Journal of Nutrition | 2000

Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice.

Noboru Manabe; Yasuyoshi Azuma; Miki Sugimoto; Kozue Uchio; Makoto Miyamoto; N. Taketomo; H. Tsuchita; Hajime Miyamoto

The beneficial effects of a traditional Chinese medicine, Cordyceps sinensis (Cs), on mice with hypoferric anaemia were evaluated by NMR spectroscopy. Experimental hypoferric anaemia was induced in mice by feeding with an Fe-free diet for 6 weeks. They were then given extract from cultured Cs (200 mg/kg body weight daily, orally) and were placed on an Fe-containing recovery diet (35 mg Fe/kg diet) for 4 weeks. In vivo 31P and 2H NMR spectra acquired noninvasively and quantitatively at weekly intervals were used to evaluate hepatic energy metabolism and blood flow in the mice. During the 4-week Cs-extract treatment, consistent increases were observed in liver beta-ATP: inorganic phosphate value by liver 31P NMR spectroscopy, representing the high energy state, and in blood-flow rate as determined by 2H NMR spectroscopy of deuterated water (D2O) uptake after intravenous injection of D2O. The haematological variables (the packed cell volume and the haemoglobin level) and the hepatic intracellular pH, which was determined from the NMR chemical shift difference between the inorganic phosphate peak and the alpha-phosphate peak of ATP, were not significantly different between Cs-extract-treated and control mice. As blood flow and energy metabolism are thought to be linked, the Cs-extract-increased hepatic energy metabolism in the dietary hypoferric anaemic mice was concluded to be due to increased hepatic blood flow.


Plant Physiology | 2013

Characterization of the Complex Regulation of AtALMT1 Expression in Response to Phytohormones and Other Inducers

Yasufumi Kobayashi; Yuriko Kobayashi; Miki Sugimoto; Venkatachalam Lakshmanan; Satoshi Iuchi; Masatomo Kobayashi; Harsh P. Bais; Hiroyuki Koyama

Complex transcriptional response of AtALMT1 malate transporter could account for its contribution to pleiotropic traits. In Arabidopsis (Arabidopsis thaliana), malate released into the rhizosphere has various roles, such as detoxifying rhizotoxic aluminum (Al) and recruiting beneficial rhizobacteria that induce plant immunity. ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1) is a critical gene in these responses, but its regulatory mechanisms remain unclear. To explore the mechanism of the multiple responses of AtALMT1, we profiled its expression patterns in wild-type plants, in transgenic plants harboring various deleted promoter constructs, and in mutant plants with defects in signal transduction in response to various inducers. AtALMT1 transcription was clearly induced by indole-3-acetic acid (IAA), abscisic acid (ABA), low pH, and hydrogen peroxide, indicating that it was able to respond to multiple signals, while it was not induced by methyl jasmonate and salicylic acid. The IAA-signaling double mutant nonphototropic hypocotyls4-1; auxin-responsive factor19-1 and the ABA-signaling mutant aba insensitive1-1 did not respond to auxin and ABA, respectively, but both showed an Al response comparable to that of the wild type. A synthetic microbe-associated molecular pattern peptide, flagellin22 (flg22), induced AtALMT1 transcription but did not induce the transcription of IAA- and ABA-responsive biomarker genes, indicating that both Al and flg22 responses of AtALMT1 were independent of IAA and ABA signaling. An in planta β-glucuronidase reporter assay identified that the ABA response was regulated by a region upstream (−317 bp) from the first ATG codon, but other stress responses may share critical regulatory element(s) located between −292 and −317 bp. These results illustrate the complex regulation of AtALMT1 expression during the adaptation to abiotic and biotic stresses.


Journal of Experimental Zoology | 2010

Expression of methylation pathway enzymes in bovine oocytes and preimplantation embryos

Shuntaro Ikeda; Takahiro Namekawa; Miki Sugimoto; Shinichi Kume

The methylation pathway, which consists of two metabolic cycles of nutrients, i.e., the methionine and folate cycles, generates S-adenosylmethionine, the methyl donor for the methylation of DNA and histones. Using reverse transcription-polymerase chain reaction, we examined the gene expression patterns of the methylation pathway enzymes during bovine oocyte maturation and preimplantation embryonic development up to the blastocyst stage. Bovine oocytes were demonstrated to have the mRNA of all methylation pathway enzymes examined, namely, methionine adenosyltransferase 1A (MAT1A), MAT2A, MAT2B, S-adenosylhomocysteine hydrolase (AHCY), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), betaine-homocysteine methyltransferase (BHMT), serine hydroxymethyltransferase 1 (SHMT1), SHMT2, and 5,10-methylenetetrahydrofolate reductase (MTHFR). All the transcripts were consistently expressed throughout all developmental stages, except for MAT1A, which was not detected from the 8-cell stage onward and BHMT, which was not detected in the 8-cell stage. Immunofluorescence analysis of MAT1A protein revealed the relatively higher expression in oocytes and early cleavage stage embryos up to the 8-cell stage compared with the morula and blastocyst stage. Further, to investigate the effects of methylation pathway disruption during the earliest stages of embryonic development, the effects of exogenous homocysteine on preimplantation development and DNA methylation of bovine embryos were investigated in vitro. As results, high concentrations of homocysteine induced hypermethylation of genomic DNA as well as developmental retardation in bovine embryos. These results provide a new insight into nutrient-sensitive epigenetic regulation and perturbation at the earliest stage of our life.


The Ovary (Second Edition) | 2004

CHAPTER 21 – Follicle Selection in Mammalian Ovaries: Regulatory Mechanisms of Granulosa Cell Apoptosis during Follicular Atresia

Noboru Manabe; Naoke Inoue; Takashi Miyano; Kazuhiro Sakamaki; Miki Sugimoto; Hajime Miyamoto

This chapter focuses on the follicle selection that is regulated by discriminating atresia of growing follicles and describes regulation factors that affect the follicular atresia. It briefs describes some of the factors which might regulate atresia or follicular development and observations that suggest a novel cell-death receptor and decoy receptor in regulating follicle selection in porcine ovaries. Apoptosis is the considered as the mechanism underlying ovarian follicular atresia. Specific apoptosis-related genes, such as caspase-3 and apoptotic protease activating factor-1, express in granulosa cells of atretic follicles specific changes in glycoconjugates of cell surface membrane-glycoprotein, which act as regulators for phagocytosis in neighboring granulose cells in atretic follicles. Expression levels of kinase cascades, which regulate regulating entry into cell death and proliferation in granulosa cells, change during atresia. Studies have reported that the degeneration of atretic follicles in mammalian ovaries can be explained, at least in part, by apoptotic cell death of granulosa cells and endocrine cells of the theca interna layer. Histological, cytological, and biochemical examination of the degenerating changes cumulus cells during follicular atresia in porcine ovaries have confirmed that apoptosis occurs in granulosa cells but not cumulus cells or oocytes in tertiary follicles in the early stage of atresia.


Reproduction in Domestic Animals | 2010

Effects of Astaxanthin-containing Oil on Development and Stress-related Gene Expression of Bovine Embryos Exposed to Heat Stress

T Namekawa; Shuntaro Ikeda; Miki Sugimoto; Shinichi Kume

Early bovine embryos are vulnerable to heat stress during the first few days after fertilization. The inhibitory effect of heat stress on embryonic development is known to be associated with oxidative stress, which can be attenuated by antioxidants. In the present study, we focused on the use of astaxanthin as an antioxidant and examined the effects of astaxanthin-containing oil (Ax) on post-fertilization development of bovine embryos subjected to heat stress in vitro and the expression of stress-related genes. Bovine 1-cell embryos were in vitro produced by in vitro maturation and fertilization (IVF) of oocytes recovered from abattoir-derived ovaries. At 20 h post-insemination (hpi, 0 h = the start of IVF), the embryos were introduced in modified synthetic oviduct fluid supplemented with 25 ppm of Ax (concentration of astaxanthin was 0.25 ppm) or vehicle (dimethyl sulfoxide) up to 72 hpi. The embryos were basically cultured at 38.5°C, and in the heat stress group, embryos were exposed twice to 40.5°C for 10 h (at 20-30 and 44-54 hpi). Under the condition without the Ax treatment, the cleavage rate, rate of development to the 5-8 cell stage, blastocyst yield from cultured embryos and that from cleaved embryos were lower in the heat stress group than in the group not subjected to heat stress (p < 0.05). In the heat stress group, the rate of development to the 5-8 cell stage was improved (p < 0.05) by the addition of Ax. Subsequently, we performed semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) to investigate the effects of heat stress and Ax on the mRNA expression of Src homology 2 domain-containing transforming protein C1 (SHC1), an oxidative stress adaptor protein, and superoxide dismutase 2 (SOD2), a mitochondrial reactive oxygen species (ROS) scavenger. In 5-8 cell embryos at 72 hpi, the mRNA expression levels of SHC1 and SOD2 were lower in the Ax- and heat-treated group than in the other groups (p < 0.05). These results suggest that Ax added to the culture medium ameliorates the embryonic development impaired by heat stress with its altering effects on the expression of stress-related genes.


Reproduction in Domestic Animals | 2012

Effects of Folic Acid on the Development and Oxidative Stress of Mouse Embryos Exposed to Heat Stress

Hiroyuki Koyama; Shuntaro Ikeda; Miki Sugimoto; Shinichi Kume

The development of mammalian pre-implantation embryos is inhibited by heat stress, and the inhibitory effect is associated with excess reactive oxygen species (ROS). Folate is a nutrient with various physiological functions including antioxidative effects. We first investigated the transcript expression for 10 enzymes in the cycle of folate metabolism (folate-methionine cycle) in mouse embryos at the 1-cell, 2-cell, 4- to 8-cell, morula and blastocyst stages using reverse transcription-polymerase chain reaction. All of the transcripts were consistently expressed, except for Mat1a, which was not detected from the 4- to 8-cell stage onward. Next, the effects of folic acid (the synthetic form of folate) on the development and ROS levels of heat-stressed embryos were investigated. One-cell mouse embryos were cultured with or without 1000 ng/ml folic acid basically at 38°C, and in the heat-stressed groups, embryos were exposed to 39.5°C/10 h/day on the first two days of culture. The heat stress significantly (p < 0.05) decreased blastocyst development and cell number and increased ROS levels compared to those in the group not subjected to heat stress; however, among the heat-stressed groups, blastocyst development and cell number were increased and the ROS level was decreased by the addition of folic acid. These results indicate that the mRNA of folate-methionine cycle enzymes are expressed in mouse pre-implantation embryos, suggesting they can independently utilize folate, and the inhibitory effects of heat stress on the development of mouse pre-implantation embryos are ameliorated by folic acid. The ameliorating effects of folic acid may be partly due to its antioxidative property.

Collaboration


Dive into the Miki Sugimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge