Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikihito Hayashi is active.

Publication


Featured researches published by Mikihito Hayashi.


Nature Medicine | 2011

Evidence for osteocyte regulation of bone homeostasis through RANKL expression

Tomoki Nakashima; Mikihito Hayashi; Takanobu Fukunaga; Kosaku Kurata; Masatsugu Oh-hora; Jian Q. Feng; Lynda F. Bonewald; Tatsuhiko Kodama; Anton Wutz; Erwin F. Wagner; Josef M. Penninger; Hiroshi Takayanagi

Osteocytes embedded in bone have been postulated to orchestrate bone homeostasis by regulating both bone-forming osteoblasts and bone-resorbing osteoclasts. We find here that purified osteocytes express a much higher amount of receptor activator of nuclear factor-κB ligand (RANKL) and have a greater capacity to support osteoclastogenesis in vitro than osteoblasts and bone marrow stromal cells. Furthermore, the severe osteopetrotic phenotype that we observe in mice lacking RANKL specifically in osteocytes indicates that osteocytes are the major source of RANKL in bone remodeling in vivo.


Nature | 2012

Osteoprotection by semaphorin 3A

Mikihito Hayashi; Tomoki Nakashima; Masahiko Taniguchi; Tatsuhiko Kodama; Atsushi Kumanogoh; Hiroshi Takayanagi

The bony skeleton is maintained by local factors that regulate bone-forming osteoblasts and bone-resorbing osteoclasts, in addition to hormonal activity. Osteoprotegerin protects bone by inhibiting osteoclastic bone resorption, but no factor has yet been identified as a local determinant of bone mass that regulates both osteoclasts and osteoblasts. Here we show that semaphorin 3A (Sema3A) exerts an osteoprotective effect by both suppressing osteoclastic bone resorption and increasing osteoblastic bone formation. The binding of Sema3A to neuropilin-1 (Nrp1) inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation by inhibiting the immunoreceptor tyrosine-based activation motif (ITAM) and RhoA signalling pathways. In addition, Sema3A and Nrp1 binding stimulated osteoblast and inhibited adipocyte differentiation through the canonical Wnt/β-catenin signalling pathway. The osteopenic phenotype in Sema3a−/− mice was recapitulated by mice in which the Sema3A-binding site of Nrp1 had been genetically disrupted. Intravenous Sema3A administration in mice increased bone volume and expedited bone regeneration. Thus, Sema3A is a promising new therapeutic agent in bone and joint diseases.


Trends in Endocrinology and Metabolism | 2012

New insights into osteoclastogenic signaling mechanisms

Tomoki Nakashima; Mikihito Hayashi; Hiroshi Takayanagi

Bone is continuously renewed through a dynamic balance between bone resorption and formation. This process is the fundamental basis for the maintenance of normal bone mass and architecture. Osteoclasts play a crucial role in both physiological and pathological bone resorption, and receptor activator of nuclear factor-κB ligand (RANKL) is the key cytokine that induces osteoclastogenesis. Here we summarize the recent advances in the understanding of osteoclastogenic signaling by focusing on the investigation of RANKL signaling and RANKL-expressing cells in the context of osteoimmunology. The context afforded by osteoimmunology will provide a scientific basis for future therapeutic approaches to diseases related to the skeletal and immune systems.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Blimp1-mediated repression of negative regulators is required for osteoclast differentiation.

Keizo Nishikawa; Tomoki Nakashima; Mikihito Hayashi; Takanobu Fukunaga; Shigeaki Kato; Tatsuhiko Kodama; Satoru Takahashi; Kathryn Calame; Hiroshi Takayanagi

Regulation of irreversible cell lineage commitment depends on a delicate balance between positive and negative regulators, which comprise a sophisticated network of transcription factors. Receptor activator of NF-κB ligand (RANKL) stimulates the differentiation of bone-resorbing osteoclasts through the induction of nuclear factor of activated T cells c1 (NFATc1), the essential transcription factor for osteoclastogenesis. Osteoclast-specific robust induction of NFATc1 is achieved through an autoamplification mechanism, in which NFATc1 is constantly activated by calcium signaling while the negative regulators of NFATc1 are suppressed. However, it has been unclear how such negative regulators are repressed during osteoclastogenesis. Here we show that B lymphocyte-induced maturation protein-1 (Blimp1; encoded by Prdm1), which is induced by RANKL through NFATc1 during osteoclastogenesis, functions as a transcriptional repressor of anti-osteoclastogenic genes such as Irf8 and Mafb. Overexpression of Blimp1 leads to an increase in osteoclast formation, and Prdm1-deficient osteoclast precursor cells do not undergo osteoclast differentiation efficiently. The importance of Blimp1 in bone homeostasis is underscored by the observation that mice with an osteoclast-specific deficiency in the Prdm1 gene exhibit a high bone mass phenotype caused by a decreased number of osteoclasts. Thus, NFATc1 choreographs the determination of cell fate in the osteoclast lineage by inducing the repression of negative regulators as well as through its effect on positive regulators.


Biochemical and Biophysical Research Communications | 2010

Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation

Mikihito Hayashi; Tomoki Nakashima; Tatsuhiko Kodama; Andrew P. Makrigiannis; Noriko Toyama-Sorimachi; Hiroshi Takayanagi

Osteoclasts, multinucleated cells that resorb bone, play a key role in bone remodeling. Although immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling is critical for osteoclast differentiation, the significance of immunoreceptor tyrosine-based inhibitory motif (ITIM) has not been well understood. Here we report the function of Ly49Q, an Ly49 family member possessing an ITIM motif, in osteoclastogenesis. Ly49Q is selectively induced by receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) stimulation in bone marrow-derived monocyte/macrophage precursor cells (BMMs) among the Ly49 family of NK receptors. The knockdown of Ly49Q resulted in a significant reduction in the RANKL-induced formation of tartrate-resistance acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a decreased expression of osteoclast-specific genes such as Nfatc1, Tm7sf4, Oscar, Ctsk, and Acp5. Osteoclastogenesis was also significantly impaired in Ly49Q-deficient cells in vitro. The inhibitory effect of Ly49Q-deficiency may be explained by the finding that Ly49Q competed for the association of Src-homology domain-2 phosphatase-1 (SHP-1) with paired immunoglobulin-like receptor-B (PIR-B), an ITIM-bearing receptor which negatively regulates osteoclast differentiation. Unexpectedly, Ly49Q deficiency did not lead to impaired osteoclast formation in vivo, suggesting the existence of a compensatory mechanism. This study provides an example in which an ITIM-bearing receptor functions as a positive regulator of osteoclast differentiation.


Journal of Dental Research | 2017

Reduced Mastication Impairs Memory Function

Y. Fukushima-Nakayama; Takehito Ono; Mikihito Hayashi; Masatomo Inoue; H. Wake; Takashi Ono; Tomoki Nakashima

Mastication is an indispensable oral function related to physical, mental, and social health throughout life. The elderly tend to have a masticatory dysfunction due to tooth loss and fragility in the masticatory muscles with aging, potentially resulting in impaired cognitive function. Masticatory stimulation has influence on the development of the central nervous system (CNS) as well as the growth of maxillofacial tissue in children. Although the relationship between mastication and cognitive function is potentially important in the growth period, the cellular and molecular mechanisms have not been sufficiently elucidated. Here, we show that the reduced mastication resulted in impaired spatial memory and learning function owing to the morphological change and decreased activity in the hippocampus. We used an in vivo model for reduced masticatory stimuli, in which juvenile mice were fed with powder diet and found that masticatory stimulation during the growth period positively regulated long-term spatial memory to promote cognitive function. The functional linkage between mastication and brain was validated by the decrease in neurons, neurogenesis, neuronal activity, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. These findings taken together provide in vivo evidence for a functional linkage between mastication and cognitive function in the growth period, suggesting a need for novel therapeutic strategies in masticatory function–related cognitive dysfunction.


Biochemical and Biophysical Research Communications | 2014

Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell-cell fusion.

Haruhiko Nakamura; Tomoki Nakashima; Mikihito Hayashi; Naohiro Izawa; Tetsuro Yasui; Hiroyuki Aburatani; Hiroshi Takayanagi

Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3(-) and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cell-cell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cell-cell fusion.


Scientific Reports | 2017

Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression

Ayumi Shoji-Matsunaga; Takehito Ono; Mikihito Hayashi; Hiroshi Takayanagi; Keiji Moriyama; Tomoki Nakashima

Orthodontic tooth movement is achieved by the remodeling of the alveolar bone surrounding roots of teeth. Upon the application of orthodontic force, osteoclastic bone resorption occurs on the compression side of alveolar bone, towards which the teeth are driven. However, the molecular basis for the regulatory mechanisms underlying alveolar bone remodeling has not been sufficiently elucidated. Osteoclastogenesis is regulated by receptor activator of nuclear factor-κB ligand (RANKL), which is postulated to be expressed by the cells surrounding the tooth roots. Here, we show that osteocytes are the critical source of RANKL in alveolar bone remodeling during orthodontic tooth movement. Using a newly established method for the isolation of periodontal tissue component cells from alveolar bone, we found that osteocytes expressed a much higher amount of RANKL than other cells did in periodontal tissue. The critical role of osteocyte-derived RANKL was confirmed by the reduction of orthodontic tooth movement in mice specifically lacking RANKL in osteocytes. Thus, we provide in vivo evidence for the key role of osteocyte-derived RANKL in alveolar bone remodeling, establishing a molecular basis for orthodontic force-mediated bone resorption.


Biochemical and Biophysical Research Communications | 2011

The role of the BH3-only protein Noxa in bone homeostasis

Erik Idrus; Tomoki Nakashima; Ling Wang; Mikihito Hayashi; Kazuo Okamoto; Tatsuhiko Kodama; Nobuyuki Tanaka; Tadatsugu Taniguchi; Hiroshi Takayanagi

Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases.


Archive | 2015

Semaphorins in Bone Homeostasis

Mikihito Hayashi; Tomoki Nakashima; Hiroshi Takayanagi

Intercellular communication between cells within bone is essential for the regulation of bone homeostasis. Growing evidence reveals that semaphorins have crucial roles in this process, including osteoclastic bone resorption and osteoblastic bone formation. Semaphorin 4D (Sema4D), derived from osteoclasts, has a potent inhibitory effect on osteoblast differentiation without hampering osteoclastic bone resorption. Sema3A, which is highly expressed in osteoblast lineage cells, maintains bone homeostasis by simultaneously inhibiting osteoclast differentiation and promoting osteoblast differentiation. Sema3A also has a role in the regulation of innervation, indicating the importance of future studies on the interactions among bone cells and neurons. Other semaphorins and their receptors have also been implicated in bone metabolism. These studies provide a scientific basis for future therapeutic approaches to bone diseases.

Collaboration


Dive into the Mikihito Hayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoki Nakashima

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayumi Shoji-Matsunaga

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge