Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikko J. Frilander is active.

Publication


Featured researches published by Mikko J. Frilander.


Molecular Ecology | 2008

Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing

J. Cristobal Vera; Christopher W. Wheat; Howard W. Fescemyer; Mikko J. Frilander; Douglas L. Crawford; Ilkka Hanski; James H. Marden

We present a de novo assembly of a eukaryote transcriptome using 454 pyrosequencing data. The Glanville fritillary butterfly (Melitaea cinxia; Lepidoptera: Nymphalidae) is a prominent species in population biology but had no previous genomic data. Sequencing runs using two normalized complementary DNA collections from a genetically diverse pool of larvae, pupae, and adults yielded 608 053 expressed sequence tags (mean length = 110 nucleotides), which assembled into 48 354 contigs (sets of overlapping DNA segments) and 59 943 singletons. blast comparisons confirmed the accuracy of the sequencing and assembly, and indicated the presence of c. 9000 unique genes, along with > 6000 additional microarray‐confirmed unannotated contigs. Average depth of coverage was 6.5‐fold for the longest 4800 contigs (348–2849 bp in length), sufficient for detecting large numbers of single nucleotide polymorphisms. Oligonucleotide microarray probes designed from the assembled sequences showed highly repeatable hybridization intensity and revealed biological differences among individuals. We conclude that 454 sequencing, when performed to provide sufficient coverage depth, allows de novo transcriptome assembly and a fast, cost‐effective, and reliable method for development of functional genomic tools for nonmodel species. This development narrows the gap between approaches based on model organisms with rich genetic resources vs. species that are most tractable for ecological and evolutionary studies.


Nature Cell Biology | 2009

Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome

Jens F. Sundström; Alena Vaculova; Andrei P. Smertenko; Eugene I. Savenkov; Anna Golovko; Elena A. Minina; Budhi S. Tiwari; Salvador Rodriguez-Nieto; Andrey A. Zamyatnin; Tuuli Välineva; Juha Saarikettu; Mikko J. Frilander; Maria F. Suarez; Anton V. Zavialov; Ulf Ståhl; Patrick J. Hussey; Olli Silvennoinen; Eva Sundberg; Boris Zhivotovsky; Peter V. Bozhkov

Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals. Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases. Although metacaspases are essential for PCD, their natural substrates remain unknown. Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression, is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.


Wiley Interdisciplinary Reviews - Rna | 2013

The significant other: splicing by the minor spliceosome

Janne J. Turunen; Elina H. Niemelä; Bhupendra Verma; Mikko J. Frilander

The removal of non‐coding sequences, introns, from the mRNA precursors is an essential step in eukaryotic gene expression. U12‐type introns are a minor subgroup of introns, distinct from the major or U2‐type introns. U12‐type introns are present in most eukaryotes but only account for less than 0.5% of all introns in any given genome. They are processed by a specific U12‐dependent spliceosome, which is similar to, but distinct from, the major spliceosome. U12‐type introns are spliced somewhat less efficiently than the major introns, and it is believed that this limits the expression of the genes containing such introns. Recent findings on the role of U12‐dependent splicing in development and human disease have shown that it can also affect multiple cellular processes not directly related to the functions of the host genes of U12‐type introns. At the same time, advances in understanding the regulation and phylogenetic distribution of the minor spliceosome are starting to shed light on how the U12‐type introns and the minor spliceosome may have evolved. WIREs RNA 2013, 4:61–76. doi: 10.1002/wrna.1141


Nano Letters | 2014

Virus-Encapsulated DNA Origami Nanostructures for Cellular Delivery

Joona Mikkilä; Antti-Pekka Eskelinen; Elina H. Niemelä; Veikko Linko; Mikko J. Frilander; Päivi Törmä; Mauri A. Kostiainen

DNA origami structures can be programmed into arbitrary shapes with nanometer scale precision, which opens up numerous attractive opportunities to engineer novel functional materials. One intriguing possibility is to use DNA origamis for fully tunable, targeted, and triggered drug delivery. In this work, we demonstrate the coating of DNA origami nanostructures with virus capsid proteins for enhancing cellular delivery. Our approach utilizes purified cowpea chlorotic mottle virus capsid proteins that can bind and self-assemble on the origami surface through electrostatic interactions and further pack the origami nanostructures inside the viral capsid. Confocal microscopy imaging and transfection studies with a human HEK293 cell line indicate that protein coating improves cellular attachment and delivery of origamis into the cells by 13-fold compared to bare DNA origamis. The presented method could readily find applications not only in sophisticated drug delivery applications but also in organizing intracellular reactions by origami-based templates.


Nature Communications | 2014

The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera

Virpi Ahola; Rainer Lehtonen; Panu Somervuo; Leena Salmela; Patrik Koskinen; Pasi Rastas; Niko Välimäki; Lars Paulin; Jouni Kvist; Niklas Wahlberg; Jaakko Tanskanen; Emily A. Hornett; Laura Ferguson; Shiqi Luo; Zijuan Cao; Maaike de Jong; Anne Duplouy; Olli-Pekka Smolander; Heiko Vogel; Rajiv C. McCoy; Kui Qian; Wong Swee Chong; Qin Zhang; Freed Ahmad; Jani K. Haukka; Aruj Joshi; Jarkko Salojärvi; Christopher W. Wheat; Ewald Grosse-Wilde; Daniel C. Hughes

Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.


Developmental Biology | 2010

Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs

Frederic Michon; Mark Tummers; Marika Kyyrönen; Mikko J. Frilander; Irma Thesleff

Teeth form as appendages of the ectoderm and their morphogenesis is regulated by tissue interactions mediated by networks of conserved signal pathways. Micro-RNA (miRNA) pathway has emerged as important regulator of various aspects of embryonic development, but its function in odontogenesis has not been elucidated. We show that the expression of RNAi pathway effectors is dynamic during tooth morphogenesis and differentiation of dental cells. Based on microarray profiling we selected 8 miRNAs expressed during morphogenesis and 7 miRNAs in the incisor cervical loop containing the stem cell niche. These miRNAs were mainly expressed in the dental epithelium. Conditional deletion of Dicer-1 in the epithelium (Dcr(K14)(-)(/)(-)) resulted in rather mild but significant aberrations in tooth shape and enamel formation. The cusp patterns of the Dcr(K14)(-)(/)(-) molar crowns resembled the patterns of both ancestral muroid rodents and mouse mutants with modulated signal pathways. In the Dcr(K14)(-)(/)(-) incisors, longitudinal grooves formed on the labial surface and these were shown to result from ectopic budding of the progenitor epithelium in the cervical loop. In addition, ameloblast differentiation was impaired and resulted in deficient enamel formation in molars and incisors. To help the identification of candidate target genes of the selected tooth enriched miRNAs, we constructed a new ectodermal organ oriented database, miRTooth. The predicted targets of the selected miRNAs included several components of the main morphogenetic signal pathways regulating tooth development. Based on our findings we suggest that miRNAs modulate tooth morphogenesis largely by fine tuning conserved signaling networks and that miRNAs may have played important roles during tooth evolution.


Virology | 1991

Genome organization of membrane-containing bacteriophage PRD1

Jaana K. H. Bamford; Anna-Liisa Hänninen; Tiina M. Pakula; Päivi M. Ojala; Nisse Kalkkinen; Mikko J. Frilander; Dennis H. Bamford

We have determined the nucleotide sequence of the late region (11 kbp) of the lipid-containing bacteriophage PRD1. Gene localization was carried out by complementing nonsense phage mutants with genomic clones containing specific reading frames. The localization was confirmed by sequencing the N-termini of isolated gene products as well as sequencing the N-termini of tryptic fragments of the phage membrane-associated proteins. This, with the previously obtained sequence of the early regions, allowed us to organize most of the phage genes in the phage genome.


Journal of Evolutionary Biology | 2009

Fitness differences associated with Pgi SNP genotypes in the Glanville fritillary butterfly (Melitaea cinxia)

L. Orsini; Christopher W. Wheat; Christoph R. Haag; Jouni Kvist; Mikko J. Frilander; Ilkka Hanski

Allozyme variation at the phosphoglucose isomerase (PGI) locus in the Glanville fritillary butterfly (Melitaea cinxia) is associated with variation in flight metabolic rate, dispersal rate, fecundity and local population growth rate. To map allozyme to DNA variation and to survey putative functional variation in genomic DNA, we cloned the coding sequence of Pgi and identified nonsynonymous variable sites that determine the most common allozyme alleles. We show that these single‐nucleotide polymorphisms (SNPs) exhibit significant excess of heterozygotes in field‐collected population samples as well as in laboratory crosses. This is in contrast to previous results for the same species in which other allozymes and SNPs were in Hardy–Weinberg equilibrium or exhibited an excess of homozygotes. Our results suggest that viability selection favours Pgi heterozygotes. Although this is consistent with direct overdominance at Pgi, we cannot exclude the possibility that heterozygote advantage is caused by the presence of one or more deleterious alleles at linked loci.


Molecular Ecology | 2011

Functional genomics of life history variation in a butterfly metapopulation

Christopher W. Wheat; Howard W. Fescemyer; Jouni Kvist; Éva Tas; J. Cristobal Vera; Mikko J. Frilander; Ilkka Hanski; James H. Marden

In fragmented landscapes, small populations frequently go extinct and new ones are established with poorly understood consequences for genetic diversity and evolution of life history traits. Here, we apply functional genomic tools to an ecological model system, the well-studied metapopulation of the Glanville fritillary butterfly. We investigate how dispersal and colonization select upon existing genetic variation affecting life history traits by comparing common-garden reared 2-day adult females from new populations with those from established older populations. New-population females had higher expression of abdomen genes involved in egg provisioning and thorax genes involved in the maintenance of flight muscle proteins. Physiological studies confirmed that new-population butterflies have accelerated egg maturation, apparently regulated by higher juvenile hormone titer and angiotensin converting enzyme mRNA, as well as enhanced flight metabolism. Gene expression varied between allelic forms of two metabolic genes (Pgi and Sdhd), which themselves were associated with differences in flight metabolic rate, population age and population growth rate. These results identify likely molecular mechanisms underpinning life history variation that is maintained by extinction-colonization dynamics in metapopulations.


Journal of Virology | 2002

Nonspecific Nucleoside Triphosphatase P4 of Double-Stranded RNA Bacteriophage φ6 Is Required for Single-Stranded RNA Packaging and Transcription

Markus J. Pirttimaa; Anja Paatero; Mikko J. Frilander; Dennis H. Bamford

ABSTRACT Bacteriophage φ6 has a segmented double-stranded RNA genome. The genomic single-stranded RNA (ssRNA) precursors are packaged into a preformed protein capsid, the polymerase complex, composed of viral proteins P1, P2, P4, and P7. Packaging of the genomic precursors is an energy-dependent process requiring nucleoside triphosphates. Protein P4, a nonspecific nucleoside triphosphatase, has previously been suggested to be the prime candidate for the viral packaging engine, based on its location at the vertices of the viral capsid and its biochemical characteristics. In this study we were able to obtain stable polymerase complex particles that are completely devoid of P4. Such particles were not able to package ssRNA segments and did not display RNA polymerase (either minus- or plus-strand synthesis) activity. Surprisingly, a mutation in P4, S250Q, which reduced the level of P4 in the particles to about 10% of the wild-type level, did not affect RNA packaging activity or change the kinetics of packaging. Moreover, such particles displayed minus-strand synthesis activity. However, no plus-strand synthesis was observed, suggesting that P4 has a role in the plus-strand synthesis reaction also.

Collaboration


Dive into the Mikko J. Frilander's collaboration.

Top Co-Authors

Avatar

Jouni Kvist

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Paulin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge