Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikko Kaasalainen is active.

Publication


Featured researches published by Mikko Kaasalainen.


Icarus | 2003

Spin vectors in the Koronis family: comprehensive results from two independent analyses of 213 rotation lightcurves

Stephen Michael Slivan; Richard P. Binzel; Lucy D Crespo da Silva; Mikko Kaasalainen; Mariah M Lyndaker; Marko Krco

Observations of Koronis asteroid family members (158) Koronis, (277) Elvira, (311) Claudia, (321) Florentina, and (720) Bohlinia made during the period 1998–2001 yielded 61 new individual rotation lightcurves to augment previous surveys (R.P. Binzel, 1987, Icarus 72, 135–208; S.M. Slivan, R.P. Binzel, 1996, Icarus 124, 452–470) and allow determination of the senses of rotation and spin vector orientations for these objects. Spin vector reductions were performed on these five objects and also on family members (167) Urda, (208) Lacrimosa, (534) Nassovia, and (1223) Neckar using both a combination of amplitude–magnitude and epoch methods and a convex inversion method. A total of 213 individual lightcurves were analyzed to determine sidereal rotation periods, pole solutions and obliquities, associated photometric parameters, and model shapes for each object. We checked our methods and results using the (243) Ida Master Dataset of lightcurves (R. P. Binzel et al., 1993, Icarus 105, 310–325) and found that the true pole determined from the Galileo fly by of this irregularly shaped member of the Koronis family falls just at the edge of the estimated uncertainty of our own solution. Our findings for the spin vector distribution of 10 members within the Koronis family represent the first systematic study of spin states within a well-established Hirayama family, and provide observational constraints for models of the physics of family formation and spin vector evolution in the main belt.


Methods in Ecology and Evolution | 2015

Nondestructive estimates of above‐ground biomass using terrestrial laser scanning

Kim Calders; Glenn Newnham; Andrew Burt; Simon Murphy; Pasi Raumonen; Martin Herold; Darius S. Culvenor; Valerio Avitabile; Mathias Disney; John Armston; Mikko Kaasalainen

Summary: Allometric equations are currently used to estimate above-ground biomass (AGB) based on the indirect relationship with tree parameters. Terrestrial laser scanning (TLS) can measure the canopy structure in 3D with high detail. In this study, we develop an approach to estimate AGB from TLS data, which does not need any prior information about allometry. We compare these estimates against destructively harvested AGB estimates and AGB derived from allometric equations. We also evaluate tree parameters, diameter at breast height (DBH) and tree height, estimated from traditional field inventory and TLS data. Tree height, DBH and AGB data are collected through traditional forest inventory, TLS and destructive sampling of 65 trees in a native Eucalypt Open Forest in Victoria, Australia. Single trees are extracted from the TLS data and quantitative structure models are used to estimate the tree volume directly from the point cloud data. AGB is inferred from these volumes and basic density information and is then compared with the estimates derived from allometric equations and destructive sampling. AGB estimates derived from TLS show a high agreement with the reference values from destructive sampling, with a concordance correlation coefficient (CCC) of 0·98. The agreement between AGB estimates from allometric equations and the reference is lower (CCC = 0·68-0·78). Our TLS approach shows a total AGB overestimation of 9·68% compared to an underestimation of 36·57-29·85% for the allometric equations. The error for AGB estimates using allometric equations increases exponentially with increasing DBH, whereas the error for AGB estimates from TLS is not dependent on DBH. The TLS method does not rely on indirect relationships with tree parameters or calibration data and shows better agreement with the reference data compared to estimates from allometric equations. Using 3D data also enables us to look at the height distributions of AGB, and we demonstrate that 80% of the AGB at plot level is located in the lower 60% of the trees for a Eucalypt Open Forest. This method can be applied in many forest types and can assist in the calibration and validation of broad-scale biomass maps.s


Remote Sensing | 2011

Analysis of Incidence Angle and Distance Effects on Terrestrial Laser Scanner Intensity: Search for Correction Methods

Sanna Kaasalainen; Anttoni Jaakkola; Mikko Kaasalainen; Anssi Krooks; Antero Kukko

The intensity information from terrestrial laser scanners (TLS) has become an important object of study in recent years, and there are an increasing number of applications that would benefit from the addition of calibrated intensity data to the topographic information. In this paper, we study the range and incidence angle effects on the intensity measurements and search for practical correction methods for different TLS instruments and targets. We find that the range (distance) effect is strongly dominated by instrumental factors, whereas the incidence angle effect is mainly caused by the target surface properties. Correction for both effects is possible, but more studies are needed for physical interpretation and more efficient use of intensity data for target characterization.


Icarus | 2003

Shapes and rotational properties of thirty asteroids from photometric data

Johanna Torppa; Mikko Kaasalainen; T. Michałowski; Tomasz Kwiatkowski; A. Kryszczyńska; Peter Denchev; Richard Kowalski

We have analyzed photometric lightcurves of 30 asteroids, and present here the obtained shapes, rotational periods and pole directions. We also present new photometric observations of five asteroids. The shape models indicate the existence of many features of varying degrees of irregularity. Even large main-belt asteroids display such features, so the resulting poles and periods are more consistent than those obtained by simple ellipsoid-like models. In some cases the new rotational parameters are rather different from those obtained previously, and in a few cases there were no proper previous estimates at all.


Science | 2011

Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System

H. Sierks; P. L. Lamy; Cesare Barbieri; D. Koschny; Hans Rickman; R. Rodrigo; Michael F. A'Hearn; F. Angrilli; M. A. Barucci; Jean-Loup Bertaux; I. Bertini; Sebastien Besse; B. Carry; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. de León; F. Ferri; S. Fornasier; M. Fulle; S. F. Hviid; Robert W. Gaskell; Olivier Groussin; Pedro J. Gutierrez; Wing-Huen Ip; L. Jorda; Mikko Kaasalainen; H. U. Keller

A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 ± 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.


Astronomy and Astrophysics | 2010

DAMIT: a database of asteroid models

J. Ďurech; V. Sidorin; Mikko Kaasalainen

Context. Apart from a few targets that were directly imaged by spacecraft, remote sensing techniques are the main source of information about the basic physical properties of asteroids, such as the size, the spin state, or the spectral type. The most widely used observing technique ‐ time-resolved photometry ‐ provides us with data that can be used for deriving asteroid shapes and spin states. In the past decade, inversion of asteroid lightcurves has led to more than a hundred asteroid models. In the next decade, when data from all-sky surveys are available, the number of asteroid models will increase. Combining photometry with, e.g., adaptive optics data produces more detailed models. Aims. We created the Database of Asteroid Models from Inversion Techniques (DAMIT) with the aim of providing the astronomical community access to reliable and up-to-date physical models of asteroids ‐ i.e., their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects, as well as for statistical studies of the whole set. Methods. Most DAMIT models were derived from photometric data by the lightcurve inversion method. Some of them have been further refined or scaled using adaptive optics images, infrared observations, or occultation data. A substantial number of the models were derived also using sparse photometric data from astrometric databases. Results. At present, the database contains models of more than one hundred asteroids. For each asteroid, DAMIT provides the polyhedral shape model, the sidereal rotation period, the spin axis direction, and the photometric data used for the inversion. The database is updated when new models are available or when already published models are updated or refined. We have also released the C source code for the lightcurve inversion and for the direct problem (updates and extensions will follow).


IEEE Transactions on Geoscience and Remote Sensing | 2009

Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets

Sanna Kaasalainen; Hannu Hyyppä; Antero Kukko; Paula Litkey; Eero Ahokas; Juha Hyyppä; Hubert Lehner; Anttoni Jaakkola; Juha Suomalainen; Altti Akujärvi; Mikko Kaasalainen; Ulla Pyysalo

We present a new approach for radiometric calibration of light detection and ranging (LIDAR) intensity data and demonstrate an application of this method to natural targets. The method is based on 1) using commercially available sand and gravel as reference targets and 2) the calibration of these reference targets in the laboratory conditions to know their backscatter properties. We have investigated the target properties crucial for accurate and consistent reflectance calibration and present a set of ideal targets easily available for calibration purposes. The first results from LIDAR-based brightness measurement of grass and sand show that the gravel-based calibration approach works in practice, is cost effective, and produces statistically meaningful results: Comparison of results from two separate airborne laser scanning campaigns shows that the relative calibration produces repeatable reflectance values.


Science | 2010

E-type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta

H. U. Keller; Cesare Barbieri; D. Koschny; P. L. Lamy; Hans Rickman; R. Rodrigo; H. Sierks; Michael F. A'Hearn; F. Angrilli; M. A. Barucci; G. Cremonese; V. Da Deppo; B. Davidsson; M. De Cecco; Stefano Debei; S. Fornasier; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; S. F. Hviid; Wing-Huen Ip; L. Jorda; J. Knollenberg; J.-R. Kramm; E. Kührt; M. Küppers; L. M. Lara; M. Lazzarin; J. J. Lopez Moreno; Francesco Marzari

Smooth Space Pebble In September 2008, on its way to meet comet 67P/Churyumov-Gerasimenko, the Rosetta spacecraft flew by asteroid Steins, a member of a very rare class of asteroids that had never been observed closely by spacecraft. Keller et al. (p. 190) analyzed the images to generate a reconstruction of the asteroids shape. Steins is oblate with an effective spherical diameter of 5.3 kilometers, and it lacks small craters, which may have been erased by surface reshaping. Indeed, Steinss shape resembles that of a body that was spun-up by the YORP effect—a torque produced by incident sunlight, which can alter the rotation rate of a small body—that causes material to slide toward the equator. This effect may have produced Steinss distinctive diamond-like shape. Incident sunlight probably caused this asteroid to spin, which redistributed its mass and smoothed its surface. The European Space Agency’s Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.


Astronomy and Astrophysics | 2005

Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa

Thomas Müller; Tomohiko Sekiguchi; Mikko Kaasalainen; Masanao Abe; Sunao Hasegawa

We obtained N - and Q -band observations of the Apollo-type asteroid 25143 Itokawa during its close Earth approach in July 2004 with TIMMI2 at the ESO 3.6 m telescope. Our photometric measurement, in combination with already published data, allowed us to derive a radiometric effective diameter of


Icarus | 2011

Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes

J. Ďurech; Mikko Kaasalainen; D. Herald; David W. Dunham; Brad Timerson; Josef Hanus; Eric Frappa; John Talbot; Tsutomu Hayamizu; Brian Warner; Frederick Pilcher; Adrian Galad

0.32 \pm 0.03

Collaboration


Dive into the Mikko Kaasalainen's collaboration.

Top Co-Authors

Avatar

J. Ďurech

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

P. L. Lamy

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Pasi Raumonen

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sanna Kaasalainen

Finnish Geodetic Institute

View shared research outputs
Top Co-Authors

Avatar

B. Carry

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. Jorda

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome Berthier

Institut de mécanique céleste et de calcul des éphémérides

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markku Åkerblom

Tampere University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge