Mikko Vähäsöyrinki
University of Oulu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikko Vähäsöyrinki.
Nature | 2003
Jeremy E. Niven; Mikko Vähäsöyrinki; Mika Kauranen; Roger C. Hardie; Mikko Juusola; Matti Weckström
An array of rapidly inactivating voltage-gated K+ channels is distributed throughout the nervous systems of vertebrates and invertebrates. Although these channels are thought to regulate the excitability of neurons by attenuating voltage signals, their specific functions are often poorly understood. We studied the role of the prototypical inactivating K+ conductance, Shaker, in Drosophila photoreceptors by recording intracellularly from wild-type and Shaker mutant photoreceptors. Here we show that loss of the Shaker K+ conductance produces a marked reduction in the signal-to-noise ratio of photoreceptors, generating a 50% decrease in the information capacity of these cells in fully light-adapted conditions. By combining experiments with modelling, we show that the inactivation of Shaker K+ channels amplifies voltage signals and enables photoreceptors to use their voltage range more effectively. Loss of the Shaker conductance attenuated the voltage signal and induced a compensatory decrease in impedance. Our results demonstrate the importance of the Shaker K+ conductance for neural coding precision and as a mechanism for selectively amplifying graded signals in neurons, and highlight the effect of compensatory mechanisms on neuronal information processing.
The Journal of Neuroscience | 2006
Mikko Vähäsöyrinki; Jeremy E. Niven; Roger C. Hardie; Matti Weckström; Mikko Juusola
Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining genetic and electrophysiological approaches with biophysical modeling. We show that the Shab gene encodes the slow delayed rectifier K+ channel and identify a novel voltage-gated K+ conductance. Analysis of the in vivo recorded voltage responses together with their computer-simulated counterparts demonstrates that Shab channels in Drosophila photoreceptors attenuate the light-induced depolarization and prevent response saturation in bright light. We also show that reduction of the Shab conductance in mutant photoreceptors is accompanied by a proportional drop in their input resistance. This reduction in input resistance partially restores the signaling range, sensitivity, and dynamic coding of light intensities of Shab photoreceptors to those of the wild-type counterparts. However, loss of the Shab channels may affect both the energy efficiency of coding and the processing of natural stimuli. Our results highlight the role of different types of voltage-gated K+ channels in the performance of the photoreceptors and provide insight into functional robustness against the perturbation of specific ion channel composition.
Proceedings of the Royal Society of London B: Biological Sciences | 2003
Jeremy E. Niven; Mikko Vähäsöyrinki; Mikko Juusola
Shaker K+-channels are one of several voltage-activated K+-channels expressed in Drosophila photoreceptors. We have shown recently that Shaker channels act as selective amplifiers, attenuating some signals while boosting others. Loss of these channels reduces the photoreceptor information capacity (bits s-1) and induces compensatory changes in photoreceptors enabling them to minimize the impact of this loss upon coding natural-like stimuli. Energy as well as coding is also an important consideration in understanding the role of ion channels in neural processing. Here, we use a simple circuit model that incorporates the major ion channels, pumps and exchangers of the photoreceptors to derive experimentally based estimates of the metabolic cost of neural information in wild-type (WT) and Shaker mutant photoreceptors. We show that in WT photoreceptors, which contain Shaker K+-channels, each bit of information costs approximately half the number of ATP molecules than each bit in Shaker photoreceptors, in which lack of the Shaker K+-channels is compensated by increased leak conductance. Additionally, using a Hodgkin-Huxley-type model coupled to the circuit model we show that the amount of leak present in both WT and Shaker photoreceptors is optimized to both maximize the available voltage range and minimize the metabolic cost.
Journal of Neurophysiology | 2012
Kyösti Heimonen; Esa-Ville Immonen; Roman V. Frolov; Iikka Salmela; Mikko Juusola; Mikko Vähäsöyrinki; Matti Weckström
In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.
The Journal of Neuroscience | 2012
Roman V. Frolov; Esa-Ville Immonen; Mikko Vähäsöyrinki; Matti Weckström
Optimization of sensory processing during development can be studied by using photoreceptors of hemimetabolous insects (with incomplete metamorphosis) as a research model. We have addressed this topic in the stick insect Carausius morosus, where retinal growth after hatching is accompanied by a diurnal-to-nocturnal shift in behavior, by recording from photoreceptors of first instar nymphs and adult animals using the patch-clamp method. In the nymphs, ommatidia were smaller and photoreceptors were on average 15-fold less sensitive to light than in adults. The magnitude of A-type K+ current did not increase but the delayed rectifier doubled in adults compared with nymphs, the K+ current densities being greater in the nymphs. By contrast, the density of light-induced current did not increase, although its magnitude increased 8.6-fold, probably due to the growth of microvilli. Nymph photoreceptors performed poorly, demonstrating a peak information rate (IR) of 2.9 ± 0.7 bits/s versus 34.1 ± 5.0 bits/s in adults in response to white-noise stimulation. Strong correlations were found between photoreceptor capacitance (a proxy for cell size) and IR, and between light sensitivity and IR, with larger and more sensitive photoreceptors performing better. In adults, IR peaked at light intensities matching irradiation from the evening sky. Our results indicate that biophysical properties of photoreceptors at each age stage and visual behavior are interdependent and that developmental improvement in photoreceptor performance may facilitate the switch from the diurnal to the safer nocturnal lifestyle. This also has implications for how photoreceptors achieve optimal performance.
BMC Neuroscience | 2012
Iikka Salmela; Esa-Ville Immonen; Roman V. Frolov; Stephan Krause; Yani Krause; Mikko Vähäsöyrinki; Matti Weckström
BackgroundThe importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana), a nocturnal insect with a visual system adapted for dim light.ResultsWhole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR) and a fast transient inactivating type (KA). Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR) current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role.ConclusionsThe relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding.
The Journal of Experimental Biology | 2014
Anna Honkanen; Jouni Takalo; Kyösti Heimonen; Mikko Vähäsöyrinki; Matti Weckström
Reliable vision in dim light depends on the efficient capture of photons. Moreover, visually guided behaviour requires reliable signals from the photoreceptors to generate appropriate motor reactions. Here, we show that at behavioural low-light threshold, cockroach photoreceptors respond to moving gratings with single-photon absorption events known as ‘quantum bumps’ at or below the rate of 0.1 s−1. By performing behavioural experiments and intracellular recordings from photoreceptors under identical stimulus conditions, we demonstrate that continuous modulation of the photoreceptor membrane potential is not necessary to elicit visually guided behaviour. The results indicate that in cockroach motion detection, massive temporal and spatial pooling takes place throughout the eye under dim conditions, involving currently unknown neural processing algorithms. The extremely high night-vision capability of the cockroach visual system provides a roadmap for bio-mimetic imaging design.
Scientific Reports | 2012
Jouni Takalo; Arto Piironen; Anna Honkanen; Mikko Lempeä; Mika Aikio; Tuomas Tuukkanen; Mikko Vähäsöyrinki
Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system’s performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest.
Frontiers in Physiology | 2014
Esa-Ville Immonen; Stephan Krause; Yani Krause; Roman V. Frolov; Mikko Vähäsöyrinki; Matti Weckström
In a microvillar photoreceptor, absorption of an incident photon initiates a phototransduction reaction that generates a depolarizing light-induced current (LIC) in the microvillus. Although in-depth knowledge about these processes in photoreceptors of the fruitfly Drosophila is available, not much is known about their nature in other insect species. Here, we present description of some basic properties of both elementary and macroscopic LICs and their Ca2+-dependence in the photoreceptors of a dark-active species, the cockroach Periplaneta americana. Cockroach photoreceptors respond to single photon absorptions by generating quantum bumps with about 5-fold larger amplitudes than in Drosophila. At the macroscopic current level, cockroach photoreceptors responded to light with variable sensitivity and current waveform. This variability could be partially attributed to differences in whole-cell capacitance. Transient LICs, both elementary and macroscopic, showed only moderate dependence on extracellular Ca2+. However, with long light pulses, response inactivation was largely abolished and the overall size of LICs increased when extracellular Ca2+ was omitted. Finally, by determining relative ionic permeabilities from reversals of LICs, we demonstrate that when compared to Drosophila, cockroach light-gated channels are only moderately Ca2+-selective.
Royal Society of London. Proceedings B. Biological Sciences; 281(1795), no 20141177 (2014) | 2014
Esa-Ville Immonen; Irina Ignatova; Anna Gislén; Eric J. Warrant; Mikko Vähäsöyrinki; Matti Weckström; Roman V. Frolov
The common backswimmer, Notonecta glauca, uses vision by day and night for functions such as underwater prey animal capture and flight in search of new habitats. Although previous studies have identified some of the physiological mechanisms facilitating such flexibility in the animals vision, neither the biophysics of Notonecta photoreceptors nor possible cellular adaptations are known. Here, we studied Notonecta photoreceptors using patch-clamp and intracellular recording methods. Photoreceptor size (approximated by capacitance) was positively correlated with absolute sensitivity and acceptance angles. Information rate measurements indicated that large and more sensitive photoreceptors performed better than small ones. Our results suggest that backswimmers are adapted for vision in both dim and well-illuminated environments by having open-rhabdom eyes with large intrinsic variation in absolute sensitivity among photoreceptors, exceeding those found in purely diurnal or nocturnal species. Both electrophysiology and microscopic analysis of retinal structure suggest two retinal subsystems: the largest peripheral photoreceptors provide vision in dim light and the smaller peripheral and central photoreceptors function primarily in sunlight, with light-dependent pigment screening further contributing to adaptation in this system by dynamically recruiting photoreceptors with varying sensitivity into the operational pool.