Mikko Vastaranta
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mikko Vastaranta.
Remote Sensing | 2012
Harri Kaartinen; Juha Hyyppä; Xiaowei Yu; Mikko Vastaranta; Hannu Hyyppä; Antero Kukko; Markus Holopainen; Christian Heipke; Manuela Hirschmugl; Felix Morsdorf; Erik Næsset; Juho Pitkänen; Sorin C. Popescu; Svein Solberg; Bernd-Michael Wolf; Jee-Cheng Wu
The objective of the “Tree Extraction” project organized by EuroSDR (European Spatial data Research) and ISPRS (International Society of Photogrammetry and Remote Sensing) was to evaluate the quality, accuracy, and feasibility of automatic tree extraction methods, mainly based on laser scanner data. In the final report of the project, Kaartinen and Hyyppa (2008) reported a high variation in the quality of the published methods under boreal forest conditions and with varying laser point densities. This paper summarizes the findings beyond the final report after analyzing the results obtained in different tree height classes. Omission/Commission statistics as well as neighborhood relations are taken into account. Additionally, four automatic tree detection and extraction techniques were added to the test. Several methods in this experiment were superior to manual processing in the dominant, co-dominant and suppressed tree storeys. In general, as expected, the taller the tree, the better the location accuracy. The accuracy of tree height, after removing gross errors, was better than 0.5 m in all tree height classes with the best methods investigated in this experiment. For forest inventory, minimum curvature-based tree detection accompanied by point cloud-based cluster detection for suppressed trees is a solution that deserves attention in the future.
IEEE Transactions on Geoscience and Remote Sensing | 2012
Xinlian Liang; Paula Litkey; Juha Hyyppä; Harri Kaartinen; Mikko Vastaranta; Markus Holopainen
The demand for detailed ground reference data in quantitative forest inventories is growing rapidly, e.g., to improve the calibration of the developed models of airborne-laser-scanning-based inventories. The application of terrestrial laser scanning (TLS) in the forest has shown great potential for improving the accuracy and efficiency of field data collection. This paper presents a fully automatic stem-mapping algorithm using single-scan TLS data for collecting individual tree information from forest plots. In this method, the stem points are identified by the spatial distribution properties of the laser points, the stem model is built up of a series of cylinders, and the location of the stem is estimated by the model. The experiment was performed on nine plots with 10-m radius. The stem-location maps measured in the field by traditional methods were used as the ground truth. The overall stem-mapping accuracy was 73%. The result shows that, in a relatively dense managed forest, the majority of stems can be located by the automatic algorithm. The proposed method is a general solution for stem locating where particular plot knowledge and data format are not required.
Remote Sensing | 2012
Juha Hyyppä; Xiaowei Yu; Hannu Hyyppä; Mikko Vastaranta; Markus Holopainen; Antero Kukko; Harri Kaartinen; Anttoni Jaakkola; Matti Vaaja; Jarkko Koskinen; Petteri Alho
We present two improvements for laser-based forest inventory. The first improvement is based on using last pulse data for tree detection. When trees overlap, the surface model between the trees corresponding to the first pulse stays high, whereas the corresponding model from the last pulse results in a drop in elevation, due to its better penetration between the trees. This drop in elevation can be used for separating trees. In a test carried out in Evo, Southern Finland, we used 292 forests plots consisting of more than 5,500 trees and airborne laser scanning (ALS) data comprised of 12.7 emitted laser pulses per m2. With last pulse data, an improvement of 6% for individual tree detection was obtained when compared to using first pulse data. The improvement increased with an increasing number of stems per plot and with decreasing diameter breast height (DBH). The results confirm that there is also substantial information for tree detection in last pulse data. The second improvement is based on the use of individual tree-based features in addition to the statistical point height metrics in area-based prediction of forest variables. The commonly-used ALS point height metrics and individual tree-based features were fused into the non-parametric estimation of forest variables. By using only four individual tree-based features, stem volume estimation improved when compared to the use of statistical point height metrics. For DBH estimation, the point height metrics and individual tree-based features complemented each other. Predictions were validated at plot level.
Canadian Journal of Remote Sensing | 2013
Mikko Vastaranta; Michael A. Wulder; Joanne C. White; Anssi Pekkarinen; Sakari Tuominen; Christian Ginzler; Ville Kankare; Markus Holopainen; Juha Hyyppä; Hannu Hyyppä
Airborne laser scanning (ALS) has demonstrated utility for forestry applications and has renewed interest in other forms of remotely sensed data, especially those that capture three-dimensional (3-D) forest characteristics. One such data source results from the advanced processing of high spatial resolution digital stereo imagery (DSI) to generate 3-D point clouds. From the derived point cloud, a digital surface model and forest vertical information with similarities to ALS can be generated. A key consideration is that when developing forestry related products such as a canopy height model (CHM), a high spatial resolution digital terrain model (DTM), typically from ALS, is required to normalize DSI elevations to heights above ground. In this paper we report on our investigations into the use of DSI-derived vertical information for capturing variations in forest structure and compare these results to those acquired using ALS. An ALS-derived DTM was used to provide the spatially detailed ground surface elevations to normalize DSI-derived heights. Similar metrics were calculated from the vertical information provided by both DSI and ALS. Comparisons revealed that ALS metrics provided a more detailed characterization of the canopy surface including canopy openings. Both DSI and ALS metrics had similar levels of correlation with forest structural attributes (e.g., height, volume, and biomass). DSI-based models predicted height, diameter, basal area, stem volume, and biomass with root mean square (RMS) accuracies of 11.2%, 21.7%, 23.6%, 24.5%, and 23.7%, respectively. The respective accuracies for the ALS-based predictions were 7.8%, 19.1%, 17.8%, 17.9%, and 17.5%. Change detection between ALS-derived CHM (time 1) and DSI-derived CHM (time 2) provided change estimates that demonstrated good agreement (r = 0.71) with two-date, ALS only, change outputs. For the single-layered, even-aged stands under investigation in this study, the DSI-derived vertical information is an appropriate and cost-effective data source for estimating and updating forest information. The accuracy of DSI information is based on a capability to measure the height of the upper canopy envelope with performance analogous to ALS. Forest attributes that are well captured and subsequently modeled from height metrics are best suited to estimation from DSI metrics, whereas ALS is more suitable for capturing stand density. Further investigation is required to better understand the performance of DSI-derived height products in more complex forest environments. Furthermore, the difference in variance captured between ALS and DSI-derived CHM also needs to be better understood in the context of change detection and inventory update considerations.
Remote Sensing | 2010
Xiaowei Yu; Juha Hyyppä; Markus Holopainen; Mikko Vastaranta
Approaches to deriving forest information from laser scanner data have generally made use of two methods: the area-based and individual tree-based approaches. In this paper, these two methods were evaluated and compared for their abilities to predict forest attributes at the plot level using the same datasets. Airborne laser scanner data were collected over the Evo forest area, southern Finland, with an averaging point density of 2.6 points/m2. Mean height, mean diameter and volume were predicted from laser-derived features for plots (area-based method) or tree height, diameter at breast height and volume for individual trees (individual tree-based method) using random forests technique. To evaluate and compare the two forest inventory methods, the root-mean-squared error (RMSE) and correlation coefficient (R) between the predicted and observed plot-level values were computed. The results indicated that both area-based method (with an RMSE of 6.42% for mean height, 10.32% for mean diameter and 20.90% for volume) and individual tree-based method (with an RMSE of 5.69% for mean height, 10.77% for mean diameter and 18.55% for volume) produced promising and compatible results. Increase in point density is expected to increase the accuracy of the individual tree-based technique more than that of the area-based technique.
Canadian Journal of Remote Sensing | 2013
Michael A. Wulder; Andrew T. Hudak; Felix Morsdorf; Ross Nelson; Glenn Newnham; Mikko Vastaranta
The science associated with the use of airborne and satellite Light Detection and Ranging (LiDAR) to remotely sense forest structure has rapidly progressed over the past decade. LiDAR has evolved from being a poorly understood, potentially useful tool to an operational technology in a little over a decade, and these instruments have become a major success story in terms of their application to the measurement, mapping, or monitoring of forests worldwide. Invented in 1960, the laser and, a short time later, LiDAR, were found in research and military laboratories. Since the early 2000s, commercial technological developments coupled with an improved understanding of how to manipulate and analyze large amounts of collected data enabled notable scientific and application developments. A diversity of rapidly developing fields especially benefit from communications offered through conferences such as SilviLaser, and LiDAR has been no different. In 2002 the SilviLaser conference series was initiated to bring together those interested in the development and application of LiDAR for forested environments. Now, a little over a decade later, commercial use of LiDAR is common. In this paper – using the deliberations of SilviLaser 2012 as a source of information – we aim to capture aspects of importance to LiDAR users in the forest ecosystems community and to also point to key emerging issues as well as some remaining challenges.
Remote Sensing | 2013
Ville Kankare; Mikko Vastaranta; Markus Holopainen; Minna Räty; Xiaowei Yu; Juha Hyyppä; Hannu Hyyppä; Petteri Alho; Risto Viitala
Airborne scanning LiDAR is a promising technique for efficient and accuratebiomass mapping due to its capacity for direct measurement of the three-dimensionalstructure of vegetation. A combination of individual tree detection (ITD) and an area-basedapproach (ABA) introduced in Vastaranta et al. [1] to map forest aboveground biomass(AGB) and stem volume (VOL) was investigated. The main objective of this study was totest the usability and accuracy of LiDAR in biomass mapping. The nearest neighbourmethod was used in the ABA imputations and the accuracy of the biomass estimation wasevaluated in the Finland, where single tree-level biomass models are available. The relativeroot-mean-squared errors (RMSEs) in plot-level AGB and VOL imputation were 24.9%and 26.4% when field measurements were used in training the ABA. When ITDmeasurements were used in training, the respective accuracies ranged between 28.5%–34.9%and 29.2%–34.0%. Overall, the results show that accurate plot-level AGB estimates can beachieved with the ABA. The reduction of bias in ABA estimates in AGB and VOL wasencouraging when visually corrected ITD (ITDvisual) was used in training. We conclude that itis not feasible to use ITDvisual in wall-to-wall forest biomass inventory, but it could provide acost-efficient application for acquiring training data for ABA in forest biomass mapping.
Canadian Journal of Remote Sensing | 2016
Joanne C. White; Michael A. Wulder; Mikko Vastaranta; Thomas Hilker; Piotr Tompalski
Abstract Forest inventory and management requirements are changing rapidly in the context of an increasingly complex set of economic, environmental, and social policy objectives. Advanced remote sensing technologies provide data to assist in addressing these escalating information needs and to support the subsequent development and parameterization of models for an even broader range of information needs. This special issue contains papers that use a variety of remote sensing technologies to derive forest inventory or inventory-related information. Herein, we review the potential of 4 advanced remote sensing technologies, which we posit as having the greatest potential to influence forest inventories designed to characterize forest resource information for strategic, tactical, and operational planning: airborne laser scanning (ALS), terrestrial laser scanning (TLS), digital aerial photogrammetry (DAP), and high spatial resolution (HSR)/very high spatial resolution (VHSR) satellite optical imagery. ALS, in particular, has proven to be a transformative technology, offering forest inventories the required spatial detail and accuracy across large areas and a diverse range of forest types. The coupling of DAP with ALS technologies will likely have the greatest impact on forest inventory practices in the next decade, providing capacity for a broader suite of attributes, as well as for monitoring growth over time.
Remote Sensing | 2011
Mikko Vastaranta; Markus Holopainen; Xiaowei Yu; Juha Hyyppä; Antti Mäkinen; Jussi Rasinmäki; Timo Melkas; Harri Kaartinen; Hannu Hyyppä
Abstract: The objective was to investigate the error sources of the airborne laser scanning based individual tree detection (ITD), and its effects on forest management planning calculations. The investigated error sources were detection of trees ( e td ), error in tree height prediction ( e h ) and error in tree diameter prediction ( e d ). The effects of errors were analyzed with Monte Carlo simulations. e td was modeled empirically based on a tree’s relative size. A total of five different tree detection scenarios were tested. Effect of e h was investigated using 5% and 0% and effect of e d using 20%, 15%, 10%, 5%, 0% error levels, respectively. The research material comprised 15 forest stands located in Southern Finland. Measurements of 5,300 trees and their timber assortments were utilized as a starting point for the Monte Carlo simulated ITD inventories. ITD carried out for the same study area provided a starting point (Scenario 1) for e td . In Scenario 1, 60.2% from stem number and 75.9% from total volume (V
IEEE Geoscience and Remote Sensing Letters | 2013
Jari Vauhkonen; Teemu Hakala; Juha Suomalainen; Sanna Kaasalainen; Olli Nevalainen; Mikko Vastaranta; Markus Holopainen; Juha Hyyppä
Most forest inventories based on the use of remote-sensing data produce the required species-specific information by fusing data from different sources (e.g., Light Detection And Ranging (LiDAR) and spectral data). We tested an active hyperspectral LiDAR instrument in a laboratory measurement of spruce and pine trees to find out whether these species could be separated by means of combined range and reflectance measurements. An analysis focused on those pulses that had penetrated through the foliage improved the classification accuracies of the species with otherwise highly similar reflectance properties. Based on a careful selection of the classification features, 18 spruce and pine trees could be classified with accuracies of 78%-97% using independent training and validation data acquired by separate scans. The results denote the potential of using active hyperspectral measurements for species classification.