Miklós Péter Kalapos
Semmelweis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miklós Péter Kalapos.
Toxicology Letters | 1999
Miklós Péter Kalapos
Despite the growing interest towards methylglyoxal and glyoxalases their real role in metabolic network is still obscure. In the light of developments several reviews have been published in this field mainly dealing with only a narrow segment of this research area. In this article a trial is made to present a comprehensive overview of methylglyoxal research, extending discussion from chemistry to biological implications by reviewing some important characteristics of methylglyoxal metabolism and toxicity in a wide variety of species, and emphasizing the action of methylglyoxal on energy production, free radical generation and cell killing. Special attention is paid to the discussion of alpha-oxoaldehyde production in the environment as a potential risk factor and to the possible role of this a-dicarbonyl in diseases. Concerning the interaction of methylglyoxal with biological macromolecules (DNA, RNA, proteins) an earlier review (Kalapos, Toxicology Letters, 73, 1994, 3-24) means a supplementation to this paper, thus hoping the avoidance of unnecessary bombast. The paper arrives at the conclusion that since the early stage of evolution the function of methylglyoxalase pathway has been related to carbohydrate metabolism, but its significance has been changed over the thousands of years. Namely, at the beginning of evolution methylglyoxalase path was essential for the reductive citric acid cycle as an anaplerotic route, while in the extant metabolism it concerns with the detoxification of methylglyoxal and plays some regulatory role in triose-phosphate household. As there is a tight junction between methylglyoxal and carbohydrate metabolism its pathological role in the events of the development of diabetic complications emerges in a natural manner and further progress is hoped in this field. In contrast, significant advancement cannot be expected in relation to cancer research.
Biochimica et Biophysica Acta | 2003
Miklós Péter Kalapos
Despite the description of the ways of acetone metabolism, its real role(s) is (are) still unknown in metabolic network. In this article, a trial is made to ascertain a comprehensive overview of acetone research extending discussion from chemistry to clinical implications. Mammals are quite similar regarding their acetone metabolism, even if species differences can also be observed. By reviewing experimental data, it seems that plasma concentration of acetone in different species is in the order of 10 microm range and the concentration-dependent acetone metabolism is common to all mammals. At low concentrations of plasma acetone, the C3 pathways are operative, while at higher concentrations, the metabolism through acetate becomes dominant. Glucose formation from acetone may also contribute to the maintenance of a constant blood glucose level, but it seems to be only a minor source for that. From energetical point of view, an interorgan cooperation is suggested because transportable C3 fragments produced in the liver can serve as alternative sources of energy for the peripheral tissues in the short of circulating glucose. The degradation of acetoacetate to acetone contributes to the maintenance of pH buffering capacity, as well. Special attention is paid to the discussion of acetone production in diseases amongst which endogenous and exogenous acetonemiae have been defined. Acetonemiae of endogenous origin are due to the increased rate of acetone production followed by an increase of degrading capacity as cytochrome p450IIE1 (CYPIIE1) isozymes become induced. Exogenous acetonemiae usually resulted from intoxications caused by either acetone itself or other exogenous compounds (ethanol, isopropyl alcohol). It is highlighted that, on the one hand, isopropanol is also a normal constituent of metabolism and, on the other hand, the flat opinion that the elevation of its plasma level is a sign of alcoholism cannot further be held. The possible future directions of research upon acetone are depicted by emphasizing the need for the clear-cut identification of mammalian acetoacetate decarboxylase, and the investigation of race differences and genetic background of acetone metabolism.
Chemico-Biological Interactions | 2008
Miklós Péter Kalapos
Methylglyoxal is an alpha-oxoaldehyde inevitably produced from triose-phosphate intermediates of phosphorylating glycolysis, and also from amino acids and acetone. Recently, the attention has been focused on the involvement of free radicals in methylglyoxal toxicity. In this review, a summary of the relationship between methylglyoxal metabolism and free radical production is presented, extending discussion from the possible metabolic routes to the toxicological events by reviewing the role of free radicals in both generation and degradation of this 1,2-dicarbonyl as well as in the modification of biological macromolecules, and focusing on the action of methylglyoxal upon cellular glutathione content. Methylglyoxal-provoked free radical generation involving reactive oxygen species (ROS), reactive nitrogen species (RNS) as well as organic radicals like methylglyoxal radial or crosslinked protein radical as potential risk factors to tissue damage propagation, is thoroughly discussed. Special attention is paid to the potential therapeutic interventions. The paper arrives at the conclusion that a tight junction exists between methylglyoxal toxicity and free radical (particularly ROS) generation, though the toxicity of 1,2-dicarbonyl evolves even under anaerobic conditions, too. The events follow a sequence beginning with carbonyl stress essential for the toxicity, leading to free radical formation and finally ending in either apoptosis or necrosis. Both oxidative and nitrosative stress play important but not indispensable role in the development of methylglyoxal toxicity.
Toxicology Letters | 1994
Miklós Péter Kalapos
Although the interest is growing towards glyoxalases and methylglyoxal, their role in metabolism is still an enigma. In this paper, the effects of methylglyoxal in both in vivo and in vitro mammalian systems are reviewed and correlated with its interaction with macromolecules (nucleic acids, proteins). The theories on the role of methylglyoxal and glyoxalases are also discussed. Recently, data obtained have focused attention on the possible role of disturbed methylglyoxal metabolism in the development of diabetic complications and it is hoped that the contribution of methylglyoxal to pathological events can be ascertained in the near future.
Biochimica et Biophysica Acta | 1992
Miklós Péter Kalapos; Tamás Garzó; F. Antoni; József Mandl
Methylglyoxal is converted to D-lactic acid through a conjugation with glutathione and S-D-lactoylglutathione is an intermediate of this pathway. In isolated hepatocytes prepared from fed mice incubated without nutrients (glucose, pyruvate and amino acids) the formation and release of S-D-lactoylglutathione and also a continuous lowering of cellular glutathione were demonstrated upon addition of methylglyoxal (20 mM). Under these incubation conditions, the glutathione content of the cells decreased in the controls. On the other hand, in hepatocytes incubated in a medium supplemented with the above-mentioned compounds an accumulation of S-D-lactoylglutathione and a transient decrease of glutathione were shown after addition of methylglyoxal. Under these experimental circumstances the glutathione content of the cells was preserved. Buthionine sulfoximine--an inhibitor of glutathione synthesis--prevented the restoration of glutathione level in hepatocytes observed in the presence of methylglyoxal; emetine--an inhibitor of protein synthesis--was ineffective. It is suggested that increased methylglyoxal formation may have a role in alterations of glutathione metabolism under conditions when serum acetone is increased and methylglyoxal production from acetone is elevated.
Drug metabolism and drug interactions | 2008
Miklós Péter Kalapos
Methylglyoxal, an alpha-oxoaldehyde discovered in the 1880s, has had a hectic scientific career, at times being considered of fundamental importance and at other times viewed as playing a very subordinate role. Much has been learned about methylglyoxal, but the function of its production in the metabolic machinery is still unknown. This paper gives an overview of the changing role of methylglyoxal from a historical aspect and arrives at the conclusion that methylglyoxal is tightly bound to glycolysis from an evolutionary perspective, its production therefore being inevitable. It is not situated in the main stream of the glycolytic sequence, but a role can be assigned to its production in the phosphate supply of operating glycolysis in some prokaryotes and yeast under conditions of phosphate deficiency. This function is presumed to be performed by the enzyme methylglyoxal synthase, which is specialized for the conversion of dihydroxyacetone-phosphate to methylglyoxal. However, it is still unknown whether this enzyme and this kind of regulation also exist in animals.
Biochimica et Biophysica Acta | 1999
Miklós Péter Kalapos
Although the glyoxalase system was discovered in 1913, its function in the biological network is still a subject of debate. An attractive theory on its role was described by Albert Szent-Györgyi in the 1960s. From a birds eye view, the promine/retine concept of Szent-Györgyi seems to give a plausible role for this ubiquitous enzyme system, but on going into detail, it obviously suffers from several uncertainties which have not been discussed until now. Here, a critical overview of the theory is presented by taking the pros and cons into account. It looks as though more data object to the theory than give support to it; and the search for anticancer medicines stimulated by the theory has not resulted in a new way of treatment of tumors, either. Hence, it is feared that the theory suggested for the biological role of glyoxalase pathway cannot be accepted, as it is.
Chemico-Biological Interactions | 1995
József Mandl; Gábor Bánhegyi; Miklós Péter Kalapos; Tamás Garzó
Starvation causes several changes in the various processes of biotransformation. The focus of this review is on biotransformation of various aromatic and other compounds whose metabolism is catalyzed in phase I by isozymes belonging to the CYP2E1 gene subfamily, while in phase II phenol-UDPGT or conjugation with GSH play a dominant role. The other ways of conjugation are beyond the scope of this review. The reason why this aspect has been chosen is that the capacity of these reactions is profoundly altered by nutritional conditions. There is a balance between the two phases of biotransformation. Therefore, under standard circumstances in a well-fed state the intermediate formed in the course of phase I is converted to a conjugated compound rapidly, as a result of phase II. However, in starvation the pattern of drug metabolism is altered and the balance between the two phases is changed. This alteration of drug metabolism upon starvation is partly connected to the changes of cofactor supplies due to the metabolic state.
Biochimica et Biophysica Acta | 1991
Miklós Péter Kalapos; Tamás Garzó; F. Antoni; József Mandl
The first stage in the formation of glucose from acetone involves two oxidation steps catalyzed by isozymes of the cytochrome P-450 II E1 gene subfamily; methylglyoxal formed this way is further converted to pyruvate by a reversible conjugation with reduced glutathione. The effect of methylglyoxal on glucose formation, oxidation of aminopyrine, aniline and on reduced glutathione content was investigated in isolated hepatocytes prepared from (i) fasted or (ii) fasted and acetone (known to induce isozymes of P-450 II E1 gene subfamily) pretreated mice. Glucose formation and drug oxidation were increased by methylglyoxal at concentrations below 1 mM, but were severely decreased above 1 mM. Methylglyoxal also decreased protein synthesis at concentrations above 1 mM. If the addition of methylglyoxal was combined with that of other gluconeogenic precursors and glucose the initial increasing effect on drug oxidation was moderated or diminished and the decreasing effect (at high concentrations) was enhanced. The glutathione content of the cells was decreased by methylglyoxal in a concentration dependent manner. Acetone pretreatment of mice also resulted in a decreased glutathione content of the liver. Based on these observations it is assumed that methylglyoxal has contrasting effects in hepatocytes, and can contribute to the disturbed metabolism under circumstances when the acetone production is elevated.
Toxicology Letters | 1991
Miklós Péter Kalapos; Zsuzsa Schaff; Tamás Garzó; F. Antoni; József Mandl
The effects of a single intraperitoneal injection of methylglyoxal (50-800 mg/kg body wt.) in mice were investigated in the liver after 24 h. The administration of methylglyoxal (400 mg/kg body wt.) resulted in an increase in aniline hydroxylase activity in liver microsomes. At the same time an accumulation of p-amino-phenol, the hydroxylated product of aniline, was observed in isolated hepatocytes upon addition of aniline similarly to conditions (starvation, diabetes mellitus, pyrazole pretreatment) when aniline hydroxylase was induced. Methylglyoxal also decreased the reduced glutathione content in the liver, while the activity of serum glutamate pyruvate transaminase was increased, suggesting the onset of liver injuries. It is assumed that the increased oxidation of aniline hydroxylase combined with decreased glutathione levels after methylglyoxal treatment favours the formation of potentially hazardous phenol derivatives in the liver.