Milad Radiom
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milad Radiom.
Proceedings of SPIE, the International Society for Optical Engineering | 2009
Milad Radiom; Chun Yang; Weng Kong Chan
This paper investigates the effects of nanoparticles on surface tension and equilibrium contact angle of TiO2 - DI water nanofluids. Experimental measurements of surface tension by using the pendant droplet method show that the surface tension of the TiO2 - DI water nanofluids depends weakly on nanoparticle concentration; however, at higher nanoparticle concentrations the surface tension is lower. Various mechanisms are reported to explain this behavior. Experimental measurements of contact angles of the TiO2 - DI water nanofluids droplets on borosilicate glass slides exhibit strong nanoparticle dependence, and the general trend is increment of the contact angles with nanoparticle concentration. The effect from the so-called disjoining pressure due to the presence of nanoparticles within the thin nanofluid film wedge at the vicinity of the three-phase contact line is examined. However, the phenomenon is attributed to the pinning of contact line and local changes in solid-liquid interfacial tension due to the depositing of nanoparticles on adsorption sites on solid surface.
Nanoscale Research Letters | 2013
Milad Radiom; Chun Yang; Weng Kong Chan
This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors.
Applied Physics Letters | 2012
Christopher D. F. Honig; Milad Radiom; Brian Robbins; John Y. Walz; Mark Paul; William A. Ducker
We validate a theoretical approach for analyzing correlations in the fluctuations of two cantilevers in terms of a deterministic model, using the fluctuation-dissipation theorem [M. R. Paul and M. C. Cross, Phys. Rev. Lett. 92, 235501 (2004)]. The validation has been made possible through measurement of the correlations between the thermally stimulated vibrations of two closely spaced micrometer-scale cantilevers in fluid. Validation of the theory enables development of a method for characterizing fluids, which we call correlation force spectrometry.
Review of Scientific Instruments | 2012
Milad Radiom; Brian Robbins; Christopher D. F. Honig; John Y. Walz; Mark Paul; William A. Ducker
We describe a method, correlation force spectrometry (CFS), which characterizes fluids through measurement of the correlations between the thermally stimulated vibrations of two closely spaced micrometer-scale cantilevers in fluid. We discuss a major application: measurement of the rheological properties of fluids at high frequency and high spatial resolution. Use of CFS as a rheometer is validated by comparison between experimental data and finite element modeling of the deterministic ring-down of cantilevers using the known viscosity of fluids. The data can also be accurately fitted using a harmonic oscillator model, which can be used for rapid rheometric measurements after calibration. The method is non-invasive, uses a very small amount of fluid, and has no actively moving parts. It can also be used to analyze the rheology of complex fluids. We use CFS to show that (non-Newtonian) aqueous polyethylene oxide solution can be modeled approximately by incorporating an elastic spring between the cantilevers.
Journal of Applied Physics | 2013
Milad Radiom; Christopher D. F. Honig; John Y. Walz; Mark Paul; William A. Ducker
The dynamical-mechanical properties of a small region of fluid can be measured using two closely spaced thermally stimulated micrometer-scale cantilevers. We call this technique correlation force spectroscopy (CFS). We describe an instrument that is designed for characterizing the extensional properties of polymer molecules that straddle the gap between the two cantilevers and use it to measure the stiffness and damping (molecular friction) of a dextran molecule. The device is based on a commercial atomic force microscope, into which we have incorporated a second antiparallel cantilever. The deflection of each cantilever is measured in the frequency range dc–1 MHz and is used to generate the cross-correlation at equilibrium. The main advantage of cross-correlation measurements is the reduction in thermal noise, which sets a fundamental noise limit to force resolution. We show that the thermal noise in our cross-correlation measurements is less than one third of the value for single-cantilever force micros...
Physics of Fluids | 2015
Milad Radiom; Brian Robbins; Mark Paul; William A. Ducker
The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm−1) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (t...
Nanotechnology | 2016
Milad Radiom; Mark Paul; William A. Ducker
Tethering is used to deliver specific biological and industrial functions. For example, single-stranded DNA (ssDNA) is tethered to polymerases and long sequences of double-stranded DNA (dsDNA) during replication, and to solids in DNA microarrays. However, tethering ssDNA to a large object limits not only the available ssDNA conformations, but also the range of time-scales over which the mechanical responses of ssDNA are important. In this work we examine the effect of tethering by measurement of the mechanical response of ssDNA that is tethered at each end to two separate atomic force microscope cantilevers in aqueous solution. Thermal motion of the cantilevers drives the ends of the ssDNA chain at frequencies near 2 kHz. The presence of a tethered molecule makes a large difference to the asymmetric cross-correlation of two cantilevers, which enables resolution of the mechanical properties in our experiments. By analysis of the correlated motion of the cantilevers we extract the friction and stiffness of the ssDNA. We find that the measured friction is much larger than the friction that is usually associated with the unencumbered motion of ssDNA. We also find that the measured relaxation time, ∼30 μs, is much greater than prior measurements of the free-molecule relaxation time. We attribute the difference to the loss of conformational possibilities as a result of constraining the ends of the ssDNA.
Journal of Applied Physics | 2014
Brian Robbins; Milad Radiom; William A. Ducker; John Y. Walz; Mark Paul
We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude o...
Archive | 2015
Milad Radiom
This chapter introduces colloidal probe-correlation force spectroscopy (CP-CFS) and furthers the application of CFS in fluid flow characterization.
Archive | 2015
Milad Radiom
The main advantage of correlation force spectroscopy (CFS) over atomic force microscopy (AFM) is that the thermal noise in the cross-correlation between two cantilevers (CFS design) is much smaller than the thermal noise in the autocorrelation of a single cantilever (AFM design). In this chapter, this is examined experimentally.