Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milam A. Brantley is active.

Publication


Featured researches published by Milam A. Brantley.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC)

Benjamin M. Neale; Jesen Fagerness; Robyn Reynolds; Lucia Sobrin; Margaret M. Parker; Soumya Raychaudhuri; Perciliz L. Tan; Edwin C. Oh; Joanna E. Merriam; Eric H. Souied; Paul S. Bernstein; Binxing Li; Jeanne M. Frederick; Kang Zhang; Milam A. Brantley; Aaron Y. Lee; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; Stephan Ripke; R. Theodore Smith; Gaetano R. Barile; Nicholas Katsanis; Rando Allikmets; Mark J. Daly; Johanna M. Seddon

Advanced age-related macular degeneration (AMD) is the leading cause of late onset blindness. We present results of a genome-wide association study of 979 advanced AMD cases and 1,709 controls using the Affymetrix 6.0 platform with replication in seven additional cohorts (totaling 5,789 unrelated cases and 4,234 unrelated controls). We also present a comprehensive analysis of copy-number variations and polymorphisms for AMD. Our discovery data implicated the association between AMD and a variant in the hepatic lipase gene (LIPC) in the high-density lipoprotein cholesterol (HDL) pathway (discovery P = 4.53e-05 for rs493258). Our LIPC association was strongest for a functional promoter variant, rs10468017, (P = 1.34e-08), that influences LIPC expression and serum HDL levels with a protective effect of the minor T allele (HDL increasing) for advanced wet and dry AMD. The association we found with LIPC was corroborated by the Michigan/Penn/Mayo genome-wide association study; the locus near the tissue inhibitor of metalloproteinase 3 was corroborated by our replication cohort for rs9621532 with P = 3.71e-09. We observed weaker associations with other HDL loci (ABCA1, P = 9.73e-04; cholesterylester transfer protein, P = 1.41e-03; FADS1-3, P = 2.69e-02). Based on a lack of consistent association between HDL increasing alleles and AMD risk, the LIPC association may not be the result of an effect on HDL levels, but it could represent a pleiotropic effect of the same functional component. Results implicate different biologic pathways than previously reported and provide new avenues for prevention and treatment of AMD.


Human Molecular Genetics | 2011

Common Variants near FRK/COL10A1 and VEGFA are Associated with Advanced Age-related Macular Degeneration

Yi Yu; Tushar Bhangale; Jesen Fagerness; Stephan Ripke; Gudmar Thorleifsson; Perciliz L. Tan; E. Souied; Andrea J. Richardson; Joanna E. Merriam; Gabriëlle H.S. Buitendijk; Robyn Reynolds; Soumya Raychaudhuri; Kimberly A. Chin; Lucia Sobrin; Evangelos Evangelou; Phil H. Lee; Aaron Y. Lee; Nicolas Leveziel; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; R. Theodore Smith; Gaetano R. Barile; Robyn H. Guymer; Ruth E. Hogg; Usha Chakravarthy; Luba Robman; Omar Gustafsson; Haraldur Sigurdsson; Ward Ortmann

Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10−8] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10−9). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD.


British Journal of Ophthalmology | 2009

Pharmacogenetics of Complement Factor H (Y402H) and treatment of exudative age-related macular degeneration with ranibizumab

Aaron Y. Lee; Amanda K. Raya; Steven M. Kymes; Alan Shiels; Milam A. Brantley

Aims: To determine whether complement factor H (CFH) genotypes have a pharmacogenetic effect on the treatment of exudative age-related macular degeneration (AMD) with ranibizumab. Methods: A retrospective study of 156 patients with exudative AMD treated with intravitreal ranibizumab monotherapy was conducted. AMD phenotypes were characterised by clinical examination, visual acuity, fundus photography, fluorescein angiography and injection timing. Patients received intravitreal ranibizumab injections as part of routine ophthalmological care and were followed for a minimum of 9 months. Each patient was genotyped for the single nucleotide polymorphism rs1061170 (Y402H) in the CFH gene. Results: Baseline lesion size and angiographic type, as well as mean visual acuities at baseline, 6 months, and 9 months were similar among the three CFH genotypes. Over 9 months, patients with both risk alleles received approximately one more injection (p = 0.09). In a recurrent event analysis, patients homozygous for the CFH Y402H risk allele had a 37% significantly higher risk of requiring additional ranibizumab injections (p = 0.04). Conclusions: In this study cohort, the response to treatment of AMD with ranibizumab differed according to CFH genotype, suggesting that determining patients’ CFH genotype may be helpful in the future in tailoring treatment for exudative AMD with intravitreal ranibizumab.


Eye | 2009

Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to photodynamic therapy

Milam A. Brantley; Sean L. Edelstein; Jennifer M. King; Plotzke Mr; Rajendra S. Apte; Steven M. Kymes; Alan Shiels

AimTo determine whether there is an association between complement factor H (CFH) or LOC387715 genotypes and response to treatment with photodynamic therapy (PDT) for exudative age-related macular degeneration (AMD).MethodsSixty-nine patients being treated for neovascular AMD with PDT were genotyped for the CFH Y402H and LOC387715 A69S polymorphisms by allele-specific digestion of PCR products. AMD phenotypes were characterized by clinical examination, fundus photography, and fluorescein angiography.ResultsAdjusting for age, pre-PDT visual acuity (VA), and lesion type, mean VA after PDT was significantly worse for the CFH TT genotype than for the TC or CC genotypes (P=0.05). Post-PDT VA was significantly worse for the CFH TT genotype in the subgroup of patients with predominantly classic choroidal neovascular lesions (P=0.04), but not for the patients with occult lesions (P=0.22). For the LOC387715 A69S variant, there was no significant difference among the genotypes in response to PDT therapy.ConclusionsThe CFH Y402H variant was associated with a response to PDT treatment in this study. Patients with the CFH TT genotype fared significantly worse with PDT than did those with the CFH TC and CC genotypes, suggesting a potential relationship between CFH genotype and response to PDT.


Retina-the Journal of Retinal and Vitreous Diseases | 2006

SAFETY OF INTRAVITREAL INJECTION OF BEVACIZUMAB IN RABBIT EYES

Leonard Feiner; Emily E. Barr; Ying-Bo Shui; Nancy M. Holekamp; Milam A. Brantley

Purpose: To evaluate the safety of intravitreal injection of bevacizumab in rabbits using electrophysiological testing and histopathologic analysis. Methods: New Zealand albino rabbits were injected in one eye with control antibody (n = 2), 0.05 mL of bevacizumab (n = 3), or 0.2 mL of bevacizumab (n = 3). Electroretinograms were obtained 1 week and 4 weeks after injection. Histologic analysis was performed after completion of the electroretinographic studies. Results: No statistical differences were seen in scotopic and photopic a- and b-wave amplitudes between untreated control and bevacizumab-injected eyes. No histopathologic differences were identified between untreated control and bevacizumab-injected eyes. Conclusion: Our study did not find evidence of retinal toxicity from a single intravitreal injection of bevacizumab in rabbits.


Ophthalmology | 2012

Heritability and Genome-Wide Association Study to Assess Genetic Differences between Advanced Age-Related Macular Degeneration Subtypes

Lucia Sobrin; Stephan Ripke; Yi Yu; Jesen Fagerness; Tushar Bhangale; Perciliz L. Tan; E. Souied; Gabriëlle H.S. Buitendijk; Joanna E. Merriam; Andrea J. Richardson; Soumya Raychaudhuri; Robyn Reynolds; Kimberly A. Chin; Aaron Y. Lee; Nicolas Leveziel; Donald J. Zack; Peter A. Campochiaro; R. Theodore Smith; Gaetano R. Barile; Ruth E. Hogg; Usha Chakravarthy; Timothy W. Behrens; André G. Uitterlinden; Cornelia M. van Duijn; Johannes R. Vingerling; Milam A. Brantley; Paul N. Baird; Caroline C. W. Klaver; Rando Allikmets; Nicholas Katsanis

PURPOSE To investigate whether the 2 subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV), and geographic atrophy (GA) segregate separately in families and to identify which genetic variants are associated with these 2 subtypes. DESIGN Sibling correlation study and genome-wide association study (GWAS). PARTICIPANTS For the sibling correlation study, 209 sibling pairs with advanced AMD were included. For the GWAS, 2594 participants with advanced AMD subtypes and 4134 controls were included. Replication cohorts included 5383 advanced AMD participants and 15 240 controls. METHODS Participants had the AMD grade assigned based on fundus photography, examination, or both. To determine heritability of advanced AMD subtypes, a sibling correlation study was performed. For the GWAS, genome-wide genotyping was conducted and 6 036 699 single nucleotide polymorphisms (SNPs) were imputed. Then, the SNPs were analyzed with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. MAIN OUTCOME MEASURES Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. RESULTS The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P = 4.2 × 10(-5)), meaning that in siblings of probands with CNV or GA, the same advanced subtype is more likely to develop. In the analysis comparing participants with CNV to those with GA, a statistically significant association was observed at the ARMS2/HTRA1 locus (rs10490924; odds ratio [OR], 1.47; P = 4.3 × 10(-9)), which was confirmed in the replication samples (OR, 1.38; P = 7.4 × 10(-14) for combined discovery and replication analysis). CONCLUSIONS Whether CNV versus GA develops in a patient with AMD is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes, but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations that differ for advanced AMD subtypes and deserve follow-up in additional studies.


PLOS ONE | 2013

Metabolome-Wide Association Study of Neovascular Age-Related Macular Degeneration

Melissa P. Osborn; Youngja Park; Megan B. Parks; L. Goodwin Burgess; Karan Uppal; Kichun Lee; Dean P. Jones; Milam A. Brantley

Purpose To determine if plasma metabolic profiles can detect differences between patients with neovascular age-related macular degeneration (NVAMD) and similarly-aged controls. Methods Metabolomic analysis using liquid chromatography with Fourier-transform mass spectrometry (LC-FTMS) was performed on plasma samples from 26 NVAMD patients and 19 controls. Data were collected from mass/charge ratio (m/z) 85 to 850 on a Thermo LTQ-FT mass spectrometer, and metabolic features were extracted using an adaptive processing software package. Both non-transformed and log2 transformed data were corrected using Benjamini and Hochberg False Discovery Rate (FDR) to account for multiple testing. Orthogonal Partial Least Squares-Discriminant Analysis was performed to determine metabolic features that distinguished NVAMD patients from controls. Individual m/z features were matched to the Kyoto Encyclopedia of Genes and Genomes database and the Metlin metabolomics database, and metabolic pathways associated with NVAMD were identified using MetScape. Results Of the 1680 total m/z features detected by LC-FTMS, 94 unique m/z features were significantly different between NVAMD patients and controls using FDR (q = 0.05). A comparison of these features to those found with log2 transformed data (n = 132, q = 0.2) revealed 40 features in common, reaffirming the involvement of certain metabolites. Such metabolites included di- and tripeptides, covalently modified amino acids, bile acids, and vitamin D-related metabolites. Correlation analysis revealed associations among certain significant features, and pathway analysis demonstrated broader changes in tyrosine metabolism, sulfur amino acid metabolism, and amino acids related to urea metabolism. Conclusions These data suggest that metabolomic analysis can identify a panel of individual metabolites that differ between NVAMD cases and controls. Pathway analysis can assess the involvement of certain metabolic pathways, such as tyrosine and urea metabolism, and can provide further insight into the pathophysiology of AMD.


British Journal of Ophthalmology | 2007

ABCA4 mutations and discordant ABCA4 alleles in patients and siblings with bull’s-eye maculopathy

Michel Michaelides; Ll Chen; Milam A. Brantley; Jeaneen L. Andorf; E M Isaak; Sharon Jenkins; Graham E. Holder; Ac Bird; Edwin M. Stone; Andrew R. Webster

Aim: To determine the frequency and nature of mutations in the gene ABCA4 in a cohort of patients with bull’s-eye maculopathy (BEM). Methods: A panel of 49 subjects (comprising 40 probands/families, 7 sibling pairs and a set of three sibs) with BEM, not attributable to toxic causes, was ascertained. Blood samples from each patient were used to extract genomic DNA, with subsequent mutation screening of the entire coding sequence of ABCA4, using single-strand conformational polymorphism (SSCP) analysis and direct sequencing. Results: Fourteen probands (35%) were found to have a potentially disease-causing ABCA4 sequence variant on at least one allele. Three patients had a Gly1961Glu missense mutation, the most common variant in Stargardt disease (STGD), with 2 of these subjects having a macular dystrophy (MD) phenotype and a second ABCA4 variant previously associated with STGD. The second most common STGD mutation, Ala1038Val, was seen in one patient with cone–rod dystrophy (CORD). Five novel ABCA4 variants were detected. Two sibships were identified with a similar intra-familial phenotype but discordant ABCA4 variants. Conclusions: Variations in the ABCA4 gene are common in BEM. Two sibships showed discordant ABCA4 variants. One of these sibships illustrates that ABCA4 variants can be identified in families that have another molecular cause for their disease, due to the high prevalence of ABCA4 disease alleles in the population. The discordance evident in the second sibship may yet also be a chance finding in families with macular disease of another genetic cause, or it may represent a complex mode of inheritance determined/modified by the combination of ABCA4 alleles.


Journal of Neuropathology and Experimental Neurology | 2009

Optic Nerve Dysfunction in a Mouse Model of Neurofibromatosis-1 Optic Glioma

Balazs Hegedus; Frank W. Hughes; Joel R. Garbow; Scott M. Gianino; Debasish Banerjee; Keun-Young Kim; Mark H. Ellisman; Milam A. Brantley; David H. Gutmann

Individuals with neurofibromatosis type 1 (NF1) are prone to developoptic pathway gliomas that can result in significant visual impairment. To explore the cellular basis for the reduced visual functionresulting from optic glioma formation, we used a genetically engineered mouse model of Nf1 optic glioma (Nf1+/−GFAPCKO mice). We performed multimodal functional and structural analyses both before and after the appearance of macroscopic tumors. At 6weeks of age, before obvious glioma formation, Nf1+/−GFAPCKO mice had decreased visual-evoked potential amplitudes and increased optic nerve axon calibers. By 3 months of age, Nf1+/−GFAPCKO mice exhibited pronounced optic nerve axonopathy and apoptosis ofneurons in the retinal ganglion cell layer. Magnetic resonance diffusion tensor imaging showed a progressive increase in radial diffusivity between 6 weeks and 6 months of age in the optic nerve proximal to the tumor indicating ongoing deterioration of axons. These data suggest that optic glioma formation results in early axonaldisorganization and damage, which culminates in retinal ganglion cell death. Collectively, this study shows that Nf1+/−GFAPCKO mice can provide a useful model for defining mechanisms of visual abnormalities in children with NF1 and lay the foundations for future interventional studies aimed at reducing visual loss.


British Journal of Ophthalmology | 2004

Association between choroidal pigmentation and posterior uveal melanoma in a white population

J W Harbour; Milam A. Brantley; H Hollingsworth; Mae O. Gordon

Background/aims: It is well known that light skin pigmentation is a risk factor for cutaneous melanoma. The aim of this study was to investigate the analogous association between choroidal pigmentation and posterior uveal melanoma. Methods: Cross sectional study of 65 consecutive patients diagnosed with posterior uveal melanoma (melanoma group) and 218 consecutive patients referred for general retinal evaluation (control group). All patients were white. A clinical grading system for estimating choroidal pigmentation was developed and histologically validated in seven patients. Results: Melanoma patients with light iris colour were significantly more likely to have darker choroidal pigmentation than controls (p = 0.005). Darker choroidal pigmentation was associated histologically with increased density of choroidal melanocytes (p = 0.005). Conclusions: Increased choroidal pigmentation, as a result of an increase in the density of pigmented choroidal melanocytes, is not protective but may actually be a risk factor for the development of posterior uveal melanoma in white patients. This finding may have implications for understanding the pathogenesis of uveal melanoma.

Collaboration


Dive into the Milam A. Brantley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan L. Haines

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge