Milan Delor
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milan Delor.
Science | 2014
Milan Delor; Paul A. Scattergood; Igor V. Sazanovich; Anthony W. Parker; Gregory M. Greetham; Anthony J. H. M. Meijer; Michael Towrie; Julia A. Weinstein
Electron transfer (ET) from donor to acceptor is often mediated by nuclear-electronic (vibronic) interactions in molecular bridges. Using an ultrafast electronic-vibrational-vibrational pulse-sequence, we demonstrate how the outcome of light-induced ET can be radically altered by mode-specific infrared (IR) excitation of vibrations that are coupled to the ET pathway. Picosecond narrow-band IR excitation of high-frequency bridge vibrations in an electronically excited covalent trans-acetylide platinum(II) donor-bridge-acceptor system in solution alters both the dynamics and the yields of competing ET pathways, completely switching a charge separation pathway off. These results offer a step toward quantum control of chemical reactivity by IR excitation. Vibrational excitation can modulate electron transfer probabilities in real time. Big impact from a well-placed shake Since the advent of ultrashort laser pulses, chemists have sought to steer reaction trajectories in real time by setting particular molecular vibrations in motion. Using this approach, Delor et al. have demonstrated a markedly clear-cut influence on electron transfer probabilities along the axis of a platinum complex. The complex comprised donor and acceptor fragments—which respectively give and take electrons upon ultraviolet excitation—bridged together by triply bonded carbon chains linked to the metal center. By selectively stimulating the carbon triple-bond stretch vibration with an infrared pulse, the authors could induce substantial changes in the observed electron transfer pathways between the fragments. Science, this issue p. 1492
Nature Chemistry | 2015
Milan Delor; Theo Keane; Paul A. Scattergood; Igor V. Sazanovich; Gregory M. Greetham; Michael Towrie; Anthony J. H. M. Meijer; Julia A. Weinstein
Nuclear-electronic (vibronic) coupling is increasingly recognized as a mechanism of major importance in controlling the light-induced function of molecular systems. It was recently shown that infrared light excitation of intramolecular vibrations can radically change the efficiency of electron transfer, a fundamental chemical process. We now extend and generalize the understanding of this phenomenon by probing and perturbing vibronic coupling in several molecules in solution. In the experiments an ultrafast electronic-vibrational pulse sequence is applied to a range of donor-bridge-acceptor Pt(II) trans-acetylide assemblies, for which infrared excitation of selected bridge vibrations during ultraviolet-initiated charge separation alters the yields of light-induced product states. The experiments, augmented by quantum chemical calculations, reveal a complex combination of vibronic mechanisms responsible for the observed changes in electron transfer rates and pathways. The study raises new fundamental questions about the function of vibrational processes immediately following charge transfer photoexcitation, and highlights the molecular features necessary for external vibronic control of excited-state processes.
Inorganic Chemistry | 2014
Naina Deibel; David Schweinfurth; Stephan Hohloch; Milan Delor; Igor V. Sazanovich; Michael Towrie; Julia A. Weinstein; Biprajit Sarkar
The donor–acceptor complex [(O,NQ2–)Pt(pap0)] (1; pap = phenylazopyridine, O,NQ0 = 4,6-di-tert-butyl-N-phenyl-o-iminobenzoquinone), which displays strong π-bonding interactions and shows strong absorption in the near-IR region, has been investigated with respect to its redox-induced reactivity and electrochemical and excited-state properties. The one-electron-oxidized product [(O,NQ•–)Pt(pap0)](BF4) ([1]BF4) was chemically isolated. Single-crystal X-ray diffraction studies establish the iminosemiquinone form of O,NQ in [1]+. Simulation of the cyclic voltammograms of 1 recorded in the presence of PPh3 elucidates the mechanism and delivers relevant thermodynamic and kinetic parameters for the redox-induced reaction with PPh3. The thermodynamically stable product of this reaction, complex [(O,NQ•–) Pt(PPh3)2](PF6) ([2]PF6), was isolated and characterized by X-ray crystallography, electrochemistry, and electron paramagnetic resonance spectroscopy. Picosecond time-resolved infrared spectroscopic studies on complex 1b (one of the positional isomers of 1) and its analogue [(O,OQ2–)Pt(pap0)] (3; O,OQ = 3,5-di-tert-butyl-o-benzoquinone) provided insight into the excited-state dynamics and revealed that the nature of the lowest excited state in the amidophenolate complex 1b is primarily diimine-ligand-based, while it is predominantly an interligand charge-transfer state in the case of 3. Density functional theory calculations on [1]n+ provided further insight into the nature of the frontier orbitals of various redox forms and vibrational mode assignments. We discuss the mechanistic details of the newly established redox-induced reactivity of 1 with electron donors and propose a mechanism for this process.
Journal of the American Chemical Society | 2013
Theodore Lazarides; Igor V. Sazanovich; A. Jalila Simaan; Maria Chrisanthi Kafentzi; Milan Delor; Yasmina Mekmouche; Bruno Faure; Marius Réglier; Julia A. Weinstein; Athanassios G. Coutsolelos; Thierry Tron
Several recent studies have shown that the combination of photosensitizers with metalloenzymes can support a light-driven multielectron reduction of molecules such as CO(2) or HCN. Here we show that the association of the zinc tetramethylpyridinium porphyrin (ZnTMPyP(4+)) photosensitizer with the multicopper oxidase (MCO) laccase allows to link the oxidation of an organic molecule to the four electrons reduction of dioxygen into water. The enzyme is photoreduced within minutes with porphyrin/enzyme ratio as low as 1:40. With a 1:1 ratio, the dioxygen consumption rate is 1.7 μmol L(-1) s(-1). Flash photolysis experiments support the formation of the triplet excited state of ZnTMPyP(4+) which reduces the enzyme to form a radical cation of the porphyrin with a k(ET) ≈ 10(7) s(-1) M(-1). The long-lived triplet excited state of the ZnTMPyP(4+) (τ(0) = 0.72 ms) accounts for a substantial electron-transfer quantum yield, φ(ET) = 0.35. Consequently, the enzyme-dependent photo-oxidation of the electron donor occurs with a turnover of 8 min(-1) for the one-electron oxidation process, thereby supporting the suitability of such enzyme/sensitizer hybrid systems for aerobic photodriven transformations on substrates. This study is the first example of a phorphyrin-sensitized four-electron reduction of an enzyme of the MCO family, leading to photoreduction of dioxygen into water.
Nature Communications | 2017
Xunmo Yang; Theo Keane; Milan Delor; Anthony J. H. M. Meijer; Julia A. Weinstein; Eric R. Bittner
We report upon an analysis of the vibrational modes that couple and drive the state-to-state electronic transfer branching ratios in a model donor-bridge-acceptor system consisting of a phenothiazine-based donor linked to a naphthalene-monoimide acceptor via a platinum-acetylide bridging unit. Our analysis is based upon an iterative Lanczos search algorithm that finds superpositions of vibronic modes that optimize the electron/nuclear coupling using input from excited-state quantum chemical methods. Our results indicate that the electron transfer reaction coordinates between a triplet charge-transfer state and lower lying charge-separated and localized excitonic states are dominated by asymmetric and symmetric modes of the acetylene groups on either side of the central atom in this system. In particular, we find that while a nearly symmetric mode couples both the charge-separation and charge-recombination transitions more or less equally, the coupling along an asymmetric mode is far greater suggesting that IR excitation of the acetylene modes preferentially enhances charge-recombination transition relative to charge-separation.
Journal of the American Chemical Society | 2018
Milan Delor; Jing Dai; Trevor D. Roberts; Julia R. Rogers; Samia M. Hamed; Jeffrey B. Neaton; Phillip L. Geissler; Matthew B. Francis; Naomi S. Ginsberg
Creating artificial systems that mimic and surpass those found in nature is one of the great challenges of modern science. In the context of photosynthetic light harvesting, the difficulty lies in attaining utmost control over the energetics, positions and relative orientations of chromophores in densely packed arrays to transfer electronic excitation energy to desired locations with high efficiency. Toward achieving this goal, we use a highly versatile biomimetic protein scaffold from the tobacco mosaic virus coat protein on which chromophores can be attached at precise locations via linkers of differing lengths and rigidities. We show that minor linker modifications, including switching chiral configurations and alkyl chain shortening, lead to significant lengthening of the ultrafast excited state dynamics of the system as the linkers are shortened and rigidified. Molecular dynamics simulations provide molecular-level detail over how the chromophore attachment orientations, positions, and distances from the protein surface lead to the observed trends in system dynamics. In particular, we find that short and rigid linkers are able to sandwich water molecules between chromophore and protein, leading to chromophore-water-protein supracomplexes with intricately coupled dynamics that are highly dependent on their local protein environment. In addition, cyclohexyl-based linkers are identified as ideal candidates to retain rotational correlations over several nanoseconds and thus lock relative chromophore orientations throughout the lifetime of an exciton. Combining linker engineering with judicious placement of chromophores on the hydrated protein scaffold to exploit different chromophore-bath couplings provides a clear and effective path to producing highly controllable artificial light-harvesting systems that can increasingly mimic their natural counterparts, thus aiding to elucidate natural photosynthetic mechanisms.
Journal of Physical Chemistry Letters | 2017
Milan Delor; Dannielle G. McCarthy; Benjamin L. Cotts; Trevor D. Roberts; Rodrigo Noriega; David D. Devore; Sukrit Mukhopadhyay; Timothy S. De Vries; Naomi S. Ginsberg
Solid-state solvation (SSS) is a solid-state analogue of solvent-solute interactions in the liquid state. Although it could enable exceptionally fine control over the energetic properties of solid-state devices, its molecular mechanisms have remained largely unexplored. We use ultrafast transient absorption and optical Kerr effect spectroscopies to independently track and correlate both the excited-state dynamics of an organic emitter and the polarization anisotropy relaxation of a small polar dopant embedded in an amorphous polystyrene matrix. The results demonstrate that the dopants are able to rotationally reorient on ultrafast time scales following light-induced changes in the electronic configuration of the emitter, minimizing the system energy. The solid-state dopant-emitter dynamics are intrinsically analogous to liquid-state solvent-solute interactions. In addition, tuning the dopant/polymer pore ratio offers control over solvation dynamics by exploiting molecular-scale confinement of the dopants by the polymer matrix. Our findings will enable refined strategies for tuning optoelectronic material properties using SSS and offer new strategies to investigate mobility and disorder in heterogeneous solid and glassy materials.
Inorganic Chemistry | 2016
Stuart A. Archer; Theo Keane; Milan Delor; Anthony J. H. M. Meijer; Julia A. Weinstein
Asymmetric isotopic labeling of parallel and identical electron- or energy-transfer pathways in symmetrical molecular assemblies is an extremely challenging task owing to the inherent lack of isotopic selectivity in conventional synthetic methods. Yet, it would be a highly valuable tool in the study and control of complex light-matter interactions in molecular systems by exclusively and nonintrusively labeling one of otherwise identical reaction pathways, potentially directing charge and energy transport along a chosen path. Here we describe the first selective synthetic route to asymmetrically labeled organometallic compounds, on the example of charge-transfer platinum(II) cis-acetylide complexes. We demonstrate the selective (13)C labeling of one of two acetylide groups. We further show that such isotopic labeling successfully decouples the two ν(C≡C) in the mid-IR region, permitting independent spectroscopic monitoring of two otherwise identical electron-transfer pathways, along the (12)C≡(12)C and (13)C≡(13)C coordinates. Quantum-mechanical mixing leads to intriguing complex features in the vibrational spectra of such species, which we successfully model by full-dimensional anharmonically corrected DFT calculations, despite the large size of these systems. The synthetic route developed and demonstrated herein should lead to a great diversity of asymmetric organometallic complexes inaccessible otherwise, opening up a plethora of opportunities to advance the fundamental understanding and control of light-matter interactions in molecular systems.
Proceedings of SPIE | 2015
Milan Delor; Paul A. Scattergood; Igor V. Sazanovich; Theo Keane; Gregory M. Greetham; Anthony J. H. M. Meijer; Michael Towrie; Anthony W. Parker; Julia A. Weinstein
Using an ultrafast electronic-vibrational pulse-sequence, we show that the outcome of light-induced ET can be radically altered by mode-specific infrared (IR) excitation of vibrations which are coupled to the ET-pathway. IR-control is particularly challenging in condensed phase systems due to the ultrafast timescales involved, in particular rapid intramolecular vibrational redistribution. We demonstrate how an IR-pulse following UV-excitation perturbs nuclear-electronic (vibronic) interactions within a donor-bridge-acceptor system similar in design to those utilized in (bio)chemical light-harvesting, and alters charge-transport pathways and product state yields.
Chemical Communications | 2014
Theodore Lazarides; Milan Delor; Igor V. Sazanovich; Theresa M. McCormick; Irene P. Georgakaki; Georgios Charalambidis; Julia A. Weinstein; Athanassios G. Coutsolelos