Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milan Frank is active.

Publication


Featured researches published by Milan Frank.


Proceedings of SPIE | 2013

Preparation and characterization of Bragg fibers with air cores for transfer of laser radiation

Vlastimil Matějec; Ivan Kasik; Ondřej Podrazký; Jan Aubrecht; Milan Frank; Michal Jelínek; Vaclav Kubecek

This paper presents results of preparation and characterization of Bragg fibers with silica and air cores designed for delivery of laser radiation at 1060 nm. The fibers consist of cores with a refractive index equal to that of air or silica which is surrounded by three pairs of Bragg layers. Each pair is composed of one layer with a high and one layer with a low refractive index and is characterized by a refractive-index contrast up to 0.03. Three structures of Bragg fibers are presented in the paper, namely the structure with a silica core of 26 μm in diameter, structure with an air core of 5 μm in diameter and that with an air core of a diameter of 72 μm. Preforms of the Bragg fibers in the form of a rod or tube have been prepared by the MCVD method using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. The fibers have been drawn from the preforms under controlled temperatures in order to obtain fibers with air or solid cores. Results of characterization of prepared fibers with optical microscopy and by measuring their refractive-index profiles, losses and angular distributions of the output optical power are presented. The characterization of fibers for delivery radiation of a Nd:YAG laser with nanosecond pulses at 1060 nm, namely the transmission, attenuation coefficient, spatial profiles of transmitted beams, and bending losses are also presented. Fiber damage thresholds in a range 25-30 GW/cm2 have been determined.


Proceedings of SPIE | 2017

Spontaneous laser-line sweeping in Ho-doped fiber laser

Jan Aubrecht; Pavel Peterka; Pavel Koška; Pavel Honzatko; Michal Jelínek; Michal Kamrádek; Milan Frank; Vaclav Kubecek; Ivan Kasik

Spontaneous laser-line sweeping refers to fiber laser instabilities with regular laser wavelength drift within a broad range that may exceed 10 nm; other characteristics of the laser output are sustained relaxation self-pulsing and narrow spectral linewidth. The laser wavelength drift is caused by standing-wave in the cavity; it can be regarded as a special case of mode instability of longitudinal modes of the laser resonator. Self-sweeping was observed so far in Yb, Er, Tm and Bidoped fiber lasers. We report on Ho-doped fiber laser self-sweeping in interval of 3-5 nm near 2100 nm. The sweeping rate was typically 0.7-0.9 nm/s. The thulium-doped fiber lasers at around 2030 nm and 1950 nm were tested as pump sources. The self-sweeping was registered by FTIR spectrometer and the data processing is discussed.


Photonics, Devices, and Systems VI | 2015

Comparison of characteristics of Bragg fibers with silica and air cores

Vlastimil Matějec; Ondřej Podrazký; Ivan Kasik; Milan Frank; Michal Jelínek; Vaclav Kubecek

This paper presents the comparison of experimental characteristics of two types of Bragg fibers, one with a silica core and second with an air core. The claddings of the fibers consist of three pairs of Bragg layers. Each pair is composed of one layer with a high and one layer with a low refractive index with a refractive-index contrast of about 0.03. The diameter of the silica core is of about 30 μm and that of the air core is of about 55 μm. Preforms of the Bragg fibers in the form of a tube have been prepared by the MCVD method by using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. In the case of the fiber with the air core only Bragg layers were applied inside a substrate tube while in the case of the fiber with the silica core one additional silica layer was deposited over the Bragg layers. The fibers were drawn from the preforms under controlled temperatures in order to obtain fibers with air or solid cores. Results of characterization of prepared fibers by optical microscopy are presented. Several laser sources including a pulse and continuous-wave Nd:YAG lasers at 1064 nm and a laser diode at 1550 nm were used for testing the transmission of laser radiation through the fibers. Transmittances, attenuation coefficients, bending losses and spatial profiles of output beams from the fibers were determined from such measurements.


20th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics | 2016

Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps

Milan Frank; Michal Jelínek; David Vyhlídal; Vaclav Kubecek

In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.


Photonics Prague 2017 | 2017

Measurement of attenuation coefficient of core and cladding modes in Bragg fiber

Milan Frank; Vaclav Kubecek; Michal Jelínek; Vlastimil Matějec; Ivan Kasik; Ondřej Podrazký; Petr Páta; Karel Fliegel

In this contribution a new method for determination of transmission characteristics and mechanism of optical radiation propagation in Bragg fibers is described. The investigated Bragg fibers are designed for high-power laser radiation delivery. Attenuation coefficient and coupling efficiency are usually measured using simple cutback method for optimum mode matching of the incident radiation to the fiber mode. Our current approach is based on the cut-back technique but we also investigate the dependence of the mentioned parameters on radial position of the excitation mode from the fiber axis. In addition, using the imaging of the measured fiber output face on a CCD camera, the spatial profile of the propagated beam can be obtained. For this reason this method is suitable for delivered laser mode control. The investigated Bragg fiber consisted of the 26um diameter silica core surrounded by three pairs of circular Bragg layers. Each pair is composed of one layer with a high and one layer with a low refractive index being characterized by a refractive-index contrast up to ~0.03. The 1064nm laser beam was focused by a telescope onto the fiber input face. The beam radius in the focal plane was 5um. The Bragg fiber output face was imaged by a 1:6 optical telescope on the CCD camera. The transmitted power and spatial beam profile were registered simultaneously for various offset from the fiber axis. After the fiber shortening, the measurement was repeated and the cut-back was performed. The lowest attenuation coefficient of 0.17dB/m corresponded to a core mode of the delivered laser radiation. In general, the attenuation was higher with a shift from the radial axis of the fiber symmetry. In the case of cladding mode excitation, the attenuation parameter shows a local minimum. This phenomenon was consistent with the refractive index profile of the tested Bragg fiber.


Photonics Prague 2017 | 2017

All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

Milan Frank; Vaclav Kubecek; Michal Jelínek; Sergei N. Smetanin; L. I. Ivleva; Petr G. Zverev; Petr Páta; Karel Fliegel

A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm – 1), but also additional (332cm – 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm – 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm – 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm – 1 line instead of 6.5ps for the 925cm – 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.


20th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics | 2016

Delivery of 1.9μm laser radiation using air-core Bragg fibers

Milan Frank; Michal Jelínek; Vaclav Kubecek; Ondřej Podrazký; Ivan Kasik; Vlastimil Matějec

In this paper we have investigated Bragg fibers for the 1.94 μm laser- radiation delivery generated by a thulium fiber laser with a maximal continuous output power 50W. For such investigation laboratory-designed and fabricated hollow-core Bragg fibers have been employed with different diameters of 5, 40, 56 and 73 μm surrounded by three pairs of circular Bragg layers. Fundamental optical characteristics such as overall transmittance, attenuation coefficient, bending losses, and delivered spatial beam profiles at the wavelength of 1.94 μm for all tested fibers are reported and summarized in this contribution. In the case of laser radiation delivery with the intensity of 65 kW/cm2, the lowest attenuation coefficient of 1.278 dB/m was determined for the Bragg fiber with the inner air-core diameter of 56 μm. Moreover, the bending losses for a small bend diameter of 15 mm reached 0.177 dB only. However delivered laser radiation was highly multimode character.


Proceedings of SPIE | 2015

Transmission of red-laser radiation by using Bragg fibers with air cores

Vlastimil Matějec; Ondřej Podrazký; Ivan Kasik; Milan Frank; Michal Jelínek; Vaclav Kubecek

This paper presents experimental results on transmission characteristics of a Bragg fiber with an air core at a wavelength of 632 nm. The results are compared with those recently reported for the same fiber but at a wavelength of 1064 nm. The cladding of the fiber consists of three pairs of Bragg layers. Each pair is composed of one layer with a high and one layer with a low refractive index. A diameter of the air core is of about 50 μm. A theoretical modelling of Bragg fibers was carried out from which band gap characteristics of the fiber cladding were determined for the refractive-index contrast of the high- and low-index layers on a level of 0.03 and wavelength of 632 nm and 1064 nm. Preforms of the Bragg fiber in the form of tubes were prepared by the MCVD method. Germanium dioxide and phosphorous pentoxide were used as silica dopants for the high-index layers. The low-index layers were fabricated of silica slightly doped with phosphorous pentoxide. The last layer applied was the high-index one. Bragg fibers were drawn from the tubes under controlled temperatures around 2000 °C in order to obtain the fibers with designed dimensions of Bragg claddings and air cores. Results of characterization of prepared fibers with optical microscopy are presented in the paper. The transmittance and attenuation of the fibers at 632 nm were measured with a continuous-wave He-Ne laser as a light source. Spatial distributions of output beams from the fibers were also determined.


Photonics, Devices, and Systems VI | 2015

Optimization of passively mode-locked quasi-continuously diode- pumped Nd:GdVO4 laser in bounce geometry

Milan Frank; Michal Jelínek; Vaclav Kubecek

In this paper the operation of pulsed diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively modelocked using semiconductor saturable absorber mirror (SAM), generating microjoule level picosecond pulses at wavelength of 1063 nm, is reported. Optimization of the output coupling for generation either Q-switched mode locked pulse trains or cavity dumped single pulses with maximum energy was performed, which resulted in extraction of single pulses as short as 10 ps and energy of 20 uJ. In comparison with the previous results obtained with this Nd:GdVO4 oscillator and saturable absorber in transmission mode, the achieved pulse duration is five times shorter. Using different absorbers and parameters of single pulse extraction enables generation of the pulses with duration up to 100 ps with the energy in the range from 10 to 20 μJ.


19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics | 2014

Air core Bragg fibers for delivery of near-infrared laser radiation

Michal Jelínek; Milan Frank; Vaclav Kubecek; Vlastimil Matějec; Ivan Kasik; Ondřej Podrazký

Optical fibers designed for high power laser radiation delivery represent important tools in medicine, solar systems, or industry. For such purposes several different types of glass optical fibers such as silica, sapphire, or chalcogenide ones as well as hollow-glass fibers, photonic crystal fibers and Bragg fibers have been investigated. Air-core Bragg fibers or photonic crystal fibers offer us the possibility of light transmission in a low dispersive material - air having a high damage threshold and small non-linear coefficient. However, preforms for drawing Bragg fibers can be fabricated by MCVD method similarly as preforms of standard silica fibers. In this paper we present fundamental characteristics of laboratory-designed and fabricated Bragg fibers with air cores intended for delivery of laser radiation at a wavelength range from 0.9 to 1.5 μm. Bragg fibers with different air core diameters of 5, 45 and 73 mm were prepared. The fiber core was surrounded by three pairs of circular Bragg layers. Each pair was composed of one layer with a high and one layer with a low refractive index with a contrast up to 0.03. Several laser sources emitting at 0.975, 1.06, and 1.55 μm were used as radiation sources. Attenuation coefficients, overall transmissions, bending losses, and spatial profiles of output beams from fibers were determined at these wavelengths. The lowest attenuation coefficient of 70 dB/km was determined for the 45 μm and 73 mm air-core fiber when radiation from a laser was launched into the fibers by using optical lenses. However, multimodal transmission has been observed in such condition. It has also been found that bending losses of such fibers are negligible for bending diameters higher than 15 mm.

Collaboration


Dive into the Milan Frank's collaboration.

Top Co-Authors

Avatar

Michal Jelínek

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Vaclav Kubecek

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Ivan Kasik

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ondřej Podrazký

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vlastimil Matějec

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

David Vyhlídal

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

L. I. Ivleva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sergei N. Smetanin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jan Aubrecht

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Karel Fliegel

Czech Technical University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge