Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milan Urban is active.

Publication


Featured researches published by Milan Urban.


Bioorganic & Medicinal Chemistry | 2012

Cytotoxic heterocyclic triterpenoids derived from betulin and betulinic acid

Milan Urban; Martin Vlk; Petr Dzubak; Marian Hajduch; Jan Sarek

The aim of this work was to synthesize a set of heterocyclic derivatives of lupane, lup-20(29)-ene, and 18α-oleanane, and to investigate their cytotoxic activities. Some of those heterocycles were previously known in the oleanane (allobetulin) group; however, to our knowledge the syntheses and biological activities of lupane heterocycles have not been reported before. Starting from betulin (1) and betulinic acid (2), we prepared 3-oxo compounds and 2-bromo-3-oxo compounds 3-10, 2-hydroxymethylene-3-oxo compounds 11-13 and β-oxo esters 14-16. Condensation of these intermediates with hydrazine, phenylhydrazine, hydroxylamine, or thiourea yielded the pyrazole and phenylpyrazole derivatives 17-22, pyrazolones 23-25, isoxazoles 26 and 27, and thiazoles 28-31. Fifteen compounds (14-16, 18-25, and 29-32) have not been reported before. The cytotoxicity was measured using panel of seven cancer cell lines with/without MDR phenotype and non tumor MRC-5 and BJ fibroblasts. The preferential cytotoxicity to cancer cell lines, particularly to hematological tumors was observed, the bromo acids 5, 6 showed highest activity and selectivity against tumor cells.


Biochemistry | 2009

Ambivalent Incorporation of the Fluorescent Cytosine Analogues tC and tCo by Human DNA Polymerase α and Klenow Fragment

Gudrun Stengel; Byron W. Purse; L. Marcus Wilhelmsson; Milan Urban; Robert D. Kuchta

We studied the incorporation of the fluorescent cytidine analogues 1,3-diaza-2-oxophenothiazine (tC) and 1,3-diaza-2-oxophenoxazine (tCo) by human DNA polymerase alpha and Klenow fragment of DNA polymerase I (Escherichia coli). These tricyclic nucleobases possess the regular hydrogen bonding interface of cytosine but are significantly expanded in size toward the major groove. Despite the size alteration, both DNA polymerases insert dtCTP and dtCoTP with remarkable catalytic efficiency. Polymerization opposite guanine is comparable to the insertion of dCTP, while the insertion opposite adenine is only approximately 4-11 times less efficient than the formation of a T-A base pair. Both enzymes readily extend the formed tC(o)-G and tC(o)-A base pairs and can incorporate at least four consecutive nucleotide analogues. Consistent with these results, both DNA polymerases efficiently polymerize dGTP and dATP when tC and tCo are in the template strand. Klenow fragment inserts dGTP with a 4-9-fold higher probability than dATP, while polymerase alpha favors dGTP over dATP by a factor of 30-65. Overall, the properties of tC(o) as a templating base and as an incoming nucleotide are surprisingly symmetrical and may be universal for A and B family DNA polymerases. This finding suggests that the aptitude for ambivalent base pairing is a consequence of the electronic properties of tC(o).


Biochemistry | 2010

Mechanisms by Which Human DNA Primase Chooses To Polymerize a Nucleoside Triphosphate

Milan Urban; Nicolas Joubert; Byron W. Purse; Michal Hocek; Robert D. Kuchta

Human DNA primase synthesizes short RNA primers that DNA polymerase alpha then elongates during the initiation of all new DNA strands. Even though primase misincorporates NTPs at a relatively high frequency, this likely does not impact the final DNA product since the RNA primer is replaced with DNA. We used an extensive series of purine and pyrimidine analogues to provide further insights into the mechanism by which primase chooses whether or not to polymerize a NTP. Primase readily polymerized a size-expanded cytosine analogue, 1,3-diaza-2-oxophenothiazine NTP, across from a templating G but not across from A. The enzyme did not efficiently polymerize NTPs incapable of forming two Watson-Crick hydrogen bonds with the templating base with the exception of UTP opposite purine deoxyribonucleoside. Likewise, primase did not generate base pairs between two nucleotides with altered Watson-Crick hydrogen-bonding patterns. Examining the mechanism of NTP polymerization revealed that human primase can misincorporate NTPs via both template misreading and a primer-template slippage mechanism. Together, these data demonstrate that human primase strongly depends on Watson-Crick hydrogen bonds for efficient nucleotide polymerization, much more so than the mechanistically related herpes primase, and provide insights into the potential roles of primer-template stability and base tautomerization during misincorporation.


Biochemistry | 2009

Herpes simplex virus-1 DNA primase: a remarkably inaccurate yet selective polymerase.

Milan Urban; Nicolas Joubert; Michal Hocek; Richard E. Alexander; Robert D. Kuchta

Herpes simplex virus-1 primase misincorporates the natural NTPs at frequencies of around one error per 30 NTPs polymerized, making it one of the least accurate polymerases known. We used a series of nucleotide analogues to further test the hypothesis that primase requires Watson-Crick hydrogen bond formation to efficiently polymerize a NTP. Primase could not generate base pairs containing a complete set of hydrogen bonds in an altered arrangement (isoguanine.isocytosine) and did not efficiently polymerize dNTPs completely incapable of forming Watson-Crick hydrogen bonds opposite templating bases incapable of forming Watson-Crick hydrogen bonds. Similarly, primase did not incorporate most NTPs containing hydrophobic bases incapable of Watson-Crick hydrogen bonding opposite natural template bases. However, 2-pyridone NTP and 4-methyl-2-pyridone NTP provided striking exceptions to this rule. The effects of removing single Watson-Crick hydrogen bonding groups from either the NTP or templating bases varied from almost no effect to completely blocking polymerization depending both on the parental base pair (G.C vs A.T/U) and which base pair of the growing primer (second, third, or fourth) was examined. Thus, primase does not absolutely need to form Watson-Crick hydrogen bonds to efficiently polymerize a NTP. Additionally, we found that herpes primase can misincorporate nucleotides both by misreading the template and by a primer-template slippage mechanism. The mechanistic and biological implications of these results are discussed.


Biochemistry | 2009

Interaction of Human DNA Polymerase α and DNA Polymerase I from Bacillus stearothermophilus with Hypoxanthine and 8- Oxoguanine Nucleotides †

Jennifer N. Patro; Milan Urban; Robert D. Kuchta

To better understand how DNA polymerases interact with mutagenic bases, we examined how human DNA polymerase alpha (pol alpha), a B family enzyme, and DNA polymerase from Bacillus stearothermophilus (BF), an A family enzyme, generate adenine:hypoxanthine and adenine:8-oxo-7,8-dihydroguanine (8-oxoG) base pairs. Pol alpha strongly discriminated against polymerizing dATP opposite 8-oxoG, and removing N1, N(6), or N7 further inhibited incorporation, whereas removing N3 from dATP dramatically increased incorporation (32-fold). Eliminating N(6) from 3-deaza-dATP now greatly reduced incorporation, suggesting that incorporation of dATP (analogues) opposite 8-oxoguanine proceeds via a Hoogsteen base pair and that pol alpha uses N3 of a purine dNTP to block this incorporation. Pol alpha also polymerized 8-oxo-dGTP across from a templating A, and removing N(6) from the template adenine inhibited incorporation of 8-oxoG. The effects of N1, N(6), and N7 demonstrated a strong interdependence during formation of adenine:hypoxanthine base pairs by pol alpha, and N3 of dATP again helps prevent polymerization opposite a templating hypoxanthine. BF very efficiently polymerized 8-oxo-dGTP opposite adenine, and N1 and N7 of adenine appear to play important roles. BF incorporates dATP opposite 8-oxoG less efficiently, and modifying N1, N(6), or N7 greatly inhibits incorporation. N(6) and, to a lesser extent, N1 help drive hypoxanthine:adenine base-pair formation by BF. The mechanistic implications of these results showing that different polymerases interact very differently with base lesions are discussed.


Biochemistry | 2009

Role of the 2-Amino Group of Purines during dNTP Polymerization by Human DNA Polymerase α

Jennifer N. Patro; Milan Urban; Robert D. Kuchta

We used a series of dNTP analogues in conjunction with templates containing modified bases to elucidate the role that N(2) of a purine plays during dNTP polymerization by human DNA polymerase alpha. Removing N(2) from dGTP had small effects during correct incorporation opposite C but specifically increased misincorporation opposite A. Adding N(2) to dATP and related analogues had small and variable effects on the efficiency of polymerization opposite T. However, the presence of N(2) greatly enhanced polymerization of these dATP analogues opposite a template C. The ability of N(2) to enhance polymerization opposite C likely results from formation of a hydrogen bond between the purine N(2) and pyrimidine O(2). Even in those cases where formation of a wobble base pair, tautomerization, and/or protonation of the base pair between the incoming dNTP and template base cannot occur (e.g., 2-pyridone.purine (or purine analogue) base pairs), N(2) enhanced formation of the base pair. Importantly, N(2) had similar effects on dNTP polymerization both when added to the incoming purine dNTP and when added to the template base being replicated. The mechanistic implications of these results regarding how pol alpha discriminates between right and wrong dNTPs are discussed.


Biochemistry | 2011

B Family DNA Polymerases Asymmetrically Recognize Pyrimidines and Purines

Travis J. Lund; Nisha A. Cavanaugh; Nicolas Joubert; Milan Urban; Jennifer N. Patro; Michal Hocek; Robert D. Kuchta

We utilized a series of pyrimidine analogues modified at O(2), N-3, and N(4)/O(4) to determine if two B family DNA polymerases, human DNA polymerase α and herpes simplex virus I DNA polymerase, choose whether to polymerize pyrimidine dNTPs using the same mechanisms they use for purine dNTPs. Removing O(2) of a pyrimidine dNTP vastly decreased the level of incorporation by these enzymes and also compromised fidelity in the case of C analogues, while removing O(2) from the templating base had more modest effects. Removing the Watson-Crick hydrogen bonding groups of N-3 and N(4)/O(4) greatly impaired polymerization, both of the resulting dNTP analogues and of natural dNTPs opposite these pyrimidine analogues when present in the template strand. Thus, the Watson-Crick hydrogen bonding groups of a pyrimidine clearly play an important role in enhancing correct dNTP polymerization but are not essential for preventing misincorporation. These studies also indicate that DNA polymerases recognize bases extremely asymmetrically, both in terms of whether they are a purine or pyrimidine and whether they are in the template or are the incoming dNTP. The mechanistic implications of these results with regard to how polymerases discriminate between right and wrong dNTPs are discussed.


Biomacromolecules | 2010

Photoinitiator nucleotide for quantifying nucleic Acid hybridization.

Leah M. Johnson; Ryan R. Hansen; Milan Urban; Robert D. Kuchta; Christopher N. Bowman

This first report of a photoinitiator-nucleotide conjugate demonstrates a novel approach for sensitive, rapid and visual detection of DNA hybridization events. This approach holds potential for various DNA labeling schemes and for applications benefiting from selective DNA-based polymerization initiators. Here, we demonstrate covalent, enzymatic incorporation of an eosin-photoinitiator 2′-deoxyuridine-5′-triphosphate (EITC-dUTP) conjugate into surface-immobilized DNA hybrids. Subsequent radical chain photoinitiation from these sites using an acrylamide/bis-acrylamide formulation yields a dynamic detection range between 500pM and 50nM of DNA target. Increasing EITC-nucleotide surface densities leads to an increase in surface-based polymer film heights until achieving a film height plateau of 280nm ±20nm at 610 ±70 EITC-nucleotides/μm2. Film heights of 10–20 nm were obtained from eosin surface densities of approximately 20 EITC-nucleotides/μm2 while below the detection limit of ~10 EITC-nucleotides/μm2, no detectable films were formed. This unique threshold behavior is utilized for instrument-free, visual quantification of target DNA concentration ranges.


Biochemistry | 2009

Discrimination between Right and Wrong Purine dNTPs by DNA Polymerase I from Bacillus stearothermophilus

Michael Trostler; Alison Delier; Jeff Beckman; Milan Urban; Jennifer N. Patro; Thomas E. Spratt; Lorena S. Beese; Robert D. Kuchta

We used a series of dATP and dGTP analogues to determine how DNA polymerase I from Bacillus stearothermophilus (BF), a prototypical A family polymerase, uses N-1, N(2), N-3, and N(6) of purine dNTPs to differentiate between right and wrong nucleotide incorporation. Altering any of these nitrogens had two effects. First, it decreased the efficiency of correct incorporation of the resulting dNTP analogue, with the loss of N-1 and N-3 having the most severe effects. Second, it dramatically increased the rate of misincorporation of the resulting dNTP analogues, with alterations in either N-1 or N(6) having the most severe impacts. Adding N(2) to dNTPs containing the bases adenine and purine increased the degree of polymerization opposite T but also tremendously increased the degree of misincorporation opposite A, C, and G. Thus, BF uses N-1, N(2), N-3, and N(6) of purine dNTPs both as negative selectors to prevent misincorporation and as positive selectors to enhance correct incorporation. Comparing how BF discriminates between right and wrong dNTPs with both B family polymerases and low-fidelity polymerases indicates that BF has chosen a unique solution vis-a-vis these other enzymes and, therefore, that nature has evolved at least three mechanistically distinct solutions.


Journal of the American Chemical Society | 2013

The energetic difference between synthesis of correct and incorrect base pairs accounts for highly accurate DNA replication.

Andrew C. Olson; Jennifer N. Patro; Milan Urban; Robert D. Kuchta

To better understand the energetics of accurate DNA replication, we directly measured ΔG(o) for the incorporation of a nucleotide into elongating dsDNA in solution (ΔG(o)(incorporation)). Direct measurements of the energetic difference between synthesis of correct and incorrect base pairs found it to be much larger than previously believed (average ΔΔG(o)(incorporation) = 5.2 ± 1.34 kcal mol(-1)). Importantly, these direct measurements indicate that ΔΔG(o)(incorporation) alone can account for the energy required for highly accurate DNA replication. Evolutionarily, these results indicate that the earliest polymerases did not have to evolve sophisticated mechanisms to replicate nucleic acids; they may only have had to take advantage of the inherently more favorable ΔG(o) for polymerization of correct nucleotides. These results also provide a basis for understanding how polymerases replicate DNA (or RNA) with high fidelity.

Collaboration


Dive into the Milan Urban's collaboration.

Top Co-Authors

Avatar

Robert D. Kuchta

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michal Hocek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gudrun Stengel

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Spratt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Iva Tišlerová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Bárta

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jiri Klinot

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge