Milana Frenkel-Morgenstern
Bar-Ilan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milana Frenkel-Morgenstern.
Science | 2008
Ariel Cohen; Naama Geva-Zatorsky; Eran Eden; Milana Frenkel-Morgenstern; Irina Issaeva; Alex Sigal; Ron Milo; Cellina Cohen-Saidon; Yuvalal Liron; Zvi Kam; Lydia Cohen; Tamar Danon; Natalie Perzov; Uri Alon
Why do seemingly identical cells respond differently to a drug? To address this, we studied the dynamics and variability of the protein response of human cancer cells to a chemotherapy drug, camptothecin. We present a dynamic-proteomics approach that measures the levels and locations of nearly 1000 different endogenously tagged proteins in individual living cells at high temporal resolution. All cells show rapid translocation of proteins specific to the drug mechanism, including the drug target (topoisomerase-1), and slower, wide-ranging temporal waves of protein degradation and accumulation. However, the cells differ in the behavior of a subset of proteins. We identify proteins whose dynamics differ widely between cells, in a way that corresponds to the outcomes—cell death or survival. This opens the way to understanding molecular responses to drugs in individual cells.
Genome Research | 2012
Milana Frenkel-Morgenstern; Vincent Lacroix; Iakes Ezkurdia; Yishai Levin; Alexandra Gabashvili; Jaime Prilusky; Angela del Pozo; Michael L. Tress; Rory Johnson; Roderic Guigó; Alfonso Valencia
Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans.
Molecular Systems Biology | 2012
Milana Frenkel-Morgenstern; Tamar Danon; Thomas Christian; Takao Igarashi; Lydia Cohen; Ya-Ming Hou; Lars Juhl Jensen
The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle‐regulated genes with that of other genes, we discovered that there is a significant preference for non‐optimal codons. Moreover, genes encoding proteins that cycle at the protein level exhibit non‐optimal codon preferences. Remarkably, cell cycle‐regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non‐optimal codon usage of genes expressed at this time, and lowest toward the end of G1, reflecting the optimal codon usage of G1 genes. Accordingly, protein levels of human glycyl‐, threonyl‐, and glutamyl‐prolyl tRNA synthetases were found to oscillate, peaking in G2/M phase. In light of our findings, we propose that non‐optimal (wobbly) matching codons influence protein synthesis during the cell cycle. We describe a new mathematical model that shows how codon usage can give rise to cell‐cycle regulation. In summary, our data indicate that cells exploit wobbling to generate cell cycle‐dependent dynamics of proteins.
Proteins | 2007
Eran Eyal; Milana Frenkel-Morgenstern; Vladimir Sobolev; Shmuel Pietrokovski
We present a new structurally derived pair‐to‐pair substitution matrix (P2PMAT). This matrix is constructed from a very large amount of integrated high quality multiple sequence alignments (Blocks) and protein structures. It evaluates the likelihoods of all 160,000 pair‐to‐pair substitutions. P2PMAT matrix implicitly accounts for evolutionary conservation, correlated mutations, and residue–residue contact potentials. The usefulness of the matrix for structural predictions is shown in this article. Predicting protein residue–residue contacts from sequence information alone, by our method (P2PConPred) is particularly accurate in the protein cores, where it performs better than other basic contact prediction methods (increasing accuracy by 25–60%). The method mean accuracy for protein cores is 24% for 59 diverse families and 34% for a subset of proteins shorter than 100 residues. This is above the level that was recently shown to be sufficient to significantly improve ab initio protein structure prediction. We also demonstrate the ability of our approach to identify native structures within large sets of (300–2000) protein decoys. On the basis of evolutionary information alone our method ranks the native structure in the top 0.3% of the decoys in 4/10 of the sets, and in 8/10 of sets the native structure is ranked in the top 10% of the decoys. The method can, thus, be used to assist filtering wrong models, complimenting traditional scoring functions. Proteins 2007.
Nucleic Acids Research | 2012
Milana Frenkel-Morgenstern; Alessandro Gorohovski; Vincent Lacroix; Mark F. Rogers; Kristina Ibáñez; César Boullosa; Eduardo Andrés León; Asa Ben-Hur; Alfonso Valencia
Chimeric RNAs that comprise two or more different transcripts have been identified in many cancers and among the Expressed Sequence Tags (ESTs) isolated from different organisms; they might represent functional proteins and produce different disease phenotypes. The ChiTaRS database of Chimeric Transcripts and RNA-Sequencing data (http://chitars.bioinfo.cnio.es/) collects more than 16 000 chimeric RNAs from humans, mice and fruit flies, 233 chimeras confirmed by RNA-seq reads and ∼2000 cancer breakpoints. The database indicates the expression and tissue specificity of these chimeras, as confirmed by RNA-seq data, and it includes mass spectrometry results for some human entries at their junctions. Moreover, the database has advanced features to analyze junction consistency and to rank chimeras based on the evidence of repeated junction sites. Finally, ‘Junction Search’ screens through the RNA-seq reads found at the chimeras’ junction sites to identify putative junctions in novel sequences entered by users. Thus, ChiTaRS is an extensive catalog of human, mouse and fruit fly chimeras that will extend our understanding of the evolution of chimeric transcripts in eukaryotes and can be advantageous in the analysis of human cancer breakpoints.
Bioinformatics | 2012
Milana Frenkel-Morgenstern; Alfonso Valencia
Motivation: Chimeric RNA transcripts are generated by different mechanisms including pre-mRNA trans-splicing, chromosomal translocations and/or gene fusions. It was shown recently that at least some of chimeric transcripts can be translated into functional chimeric proteins. Results: To gain a better understanding of the design principles underlying chimeric proteins, we have analyzed 7,424 chimeric RNAs from humans. We focused on the specific domains present in these proteins, comparing their permutations with those of known human proteins. Our method uses genomic alignments of the chimeras, identification of the gene–gene junction sites and prediction of the protein domains. We found that chimeras contain complete protein domains significantly more often than in random data sets. Specifically, we show that eight different types of domains are over-represented among all chimeras as well as in those chimeras confirmed by RNA-seq experiments. Moreover, we discovered that some chimeras potentially encode proteins with novel and unique domain combinations. Given the observed prevalence of entire protein domains in chimeras, we predict that certain putative chimeras that lack activation domains may actively compete with their parental proteins, thereby exerting dominant negative effects. More generally, the production of chimeric transcripts enables a combinatorial increase in the number of protein products available, which may disturb the function of parental genes and influence their protein–protein interaction network. Availability: our scripts are available upon request. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Nature Communications | 2015
Howard B. Gamper; Isao Masuda; Milana Frenkel-Morgenstern; Ya-Ming Hou
Maintaining the translational reading frame poses difficulty for the ribosome. Slippery mRNA sequences such as CC[C/U]-[C/U], read by isoacceptors of tRNAPro, are highly prone to +1 frameshift (+1FS) errors. Here we show that +1FS errors occur by two mechanisms, a slow mechanism when tRNAPro is stalled in the P-site next to an empty A-site and a fast mechanism during translocation of tRNAPro into the P-site. Suppression of +1FS errors requires the m1G37 methylation of tRNAPro on the 3′ side of the anticodon and the translation factor EF-P. Importantly, both m1G37 and EF-P show the strongest suppression effect when CC[C/U]-[C/U] are placed at the second codon of a reading frame. This work demonstrates that maintaining the reading frame immediately after the initiation of translation by the ribosome is an essential aspect of protein synthesis.
Trends in Genetics | 2008
Liron Klipcan; Milana Frenkel-Morgenstern; Mark Safro
Archeal proteomes can be clustered into two groups based on their cysteine content. One group of proteomes displays a low cysteine content ( approximately 0.7% of the entire proteome), whereas the second group contains twice as many cysteines as the first ( approximately 1.3%). All cysteine-rich organisms belong to the methanogenic Archaea, which generates special cysteine clusters associated with primitive metabolic reactions. Our findings suggest that cysteine plays an important role in early forms of life.
Nucleic Acids Research | 2010
Milana Frenkel-Morgenstern; Ariel Cohen; Naama Geva-Zatorsky; Eran Eden; Jaime Prilusky; Irina Issaeva; Alex Sigal; Cellina Cohen-Saidon; Yuvalal Liron; Lydia Cohen; Tamar Danon; Natalie Perzov; Uri Alon
Recent advances allow tracking the levels and locations of a thousand proteins in individual living human cells over time using a library of annotated reporter cell clones (LARC). This library was created by Cohen et al. to study the proteome dynamics of a human lung carcinoma cell-line treated with an anti-cancer drug. Here, we report the Dynamic Proteomics database for the proteins studied by Cohen et al. Each cell-line clone in LARC has a protein tagged with yellow fluorescent protein, expressed from its endogenous chromosomal location, under its natural regulation. The Dynamic Proteomics interface facilitates searches for genes of interest, downloads of protein fluorescent movies and alignments of dynamics following drug addition. Each protein in the database is displayed with its annotation, cDNA sequence, fluorescent images and movies obtained by the time-lapse microscopy. The protein dynamics in the database represents a quantitative trace of the protein fluorescence levels in nucleus and cytoplasm produced by image analysis of movies over time. Furthermore, a sequence analysis provides a search and comparison of up to 50 input DNA sequences with all cDNAs in the library. The raw movies may be useful as a benchmark for developing image analysis tools for individual-cell dynamic-proteomics. The database is available at http://www.dynamicproteomics.net/.
Nucleic Acids Research | 2015
Milana Frenkel-Morgenstern; Alessandro Gorohovski; Dunja Vucenovic; Lorena Maestre; Alfonso Valencia
Chimeric RNAs that comprise two or more different transcripts have been identified in many cancers and among the Expressed Sequence Tags (ESTs) isolated from different organisms; they might represent functional proteins and produce different disease phenotypes. The ChiTaRS 2.1 database of chimeric transcripts and RNA-Seq data (http://chitars.bioinfo.cnio.es/) is the second version of the ChiTaRS database and includes improvements in content and functionality. Chimeras from eight organisms have been collated including novel sense–antisense (SAS) chimeras resulting from the slippage of the sense and anti-sense intragenic regions. The new database version collects more than 29 000 chimeric transcripts and indicates the expression and tissue specificity for 333 entries confirmed by RNA-seq reads mapping the chimeric junction sites. User interface allows for rapid and easy analysis of evolutionary conservation of fusions, literature references and experimental data supporting fusions in different organisms. More than 1428 cancer breakpoints have been automatically collected from public databases and manually verified to identify their correct cross-references, genomic sequences and junction sites. As a result, the ChiTaRS 2.1 collection of chimeras from eight organisms and human cancer breakpoints extends our understanding of the evolution of chimeric transcripts in eukaryotes as well as their functional role in carcinogenic processes.