Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milapjit S. Sandhu is active.

Publication


Featured researches published by Milapjit S. Sandhu.


The Journal of Comparative Neurology | 2008

Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat

Michael A. Lane; Todd E. White; Marcella A. Coutts; Alex L. Jones; Milapjit S. Sandhu; David C. Bloom; Donald C. Bolser; Bill J. Yates; David D. Fuller; Paul J. Reier

Although monosynaptic bulbospinal projections to phrenic motoneurons have been extensively described, little is known about the organization of phrenic premotor neurons in the adult rat spinal cord. Because interneurons may play an important role in normal breathing and recovery following spinal cord injury, the present study has used anterograde and transneuronal retrograde tracing to study their distribution and synaptic relations. Exclusive unilateral, first‐order labeling of the phrenic motoneuron pool with pseudorabies virus demonstrated a substantial number of second‐order, bilaterally distributed cervical interneurons predominantly in the dorsal horn and around the central canal. Combined transneuronal and anterograde tracing revealed ventral respiratory column projections to prephrenic interneurons, suggesting that some propriospinal relays exist between medullary neurons and the phrenic nucleus. Dual‐labeling studies with pseudorabies virus recombinants also showed prephrenic interneurons integrated with either contralateral phrenic or intercostal motoneuron pools. The stability of interneuronal pseudorabies virus labeling patterns following lateral cervical hemisection was then addressed. Except for fewer infected contralateral interneurons at the level of the central canal, the number and distribution of phrenic‐associated interneurons was not significantly altered 2 weeks posthemisection (i.e., the point at which the earliest postinjury recovery of phrenic activity has been reported). These results demonstrate a heterogeneous population of phrenic‐related interneurons. Their connectivity and relative stability after cervical hemisection raise speculation for potentially diverse roles in modulating phrenic function normally and postinjury. J. Comp. Neurol. 511:692–709, 2008.


Respiratory Physiology & Neurobiology | 2009

Graded unilateral cervical spinal cord injury and respiratory motor recovery

David D. Fuller; Milapjit S. Sandhu; N.J. Doperalski; Michael A. Lane; T.E. White; Mark D. Bishop; Paul J. Reier

We examined the potential contribution of ventromedial (VM) tissue sparing to respiratory recovery following chronic (1 mo) unilateral C2 spinal cord injury (SCI) in rats. Preserved white matter ipsilateral to the injury was quantitatively expressed relative to contralateral white matter. The ipsilateral-to-contralateral white matter ratio was 0 after complete C2 hemisection (C2HS) and 0.23+/-0.04 with minimal VM sparing. Inspiratory (breath min(-1)) and phrenic frequency (burst min(-1)), measured by plethysmography (conscious rats) and phrenic neurograms (anesthetized rats) respectively, were both lower with minimal VM sparing (p<0.05 vs. C2HS). Tidal volume also was greater in minimal VM sparing rats during a hypercapnic challenge (p<0.05 vs. C2HS). In other C2 hemilesioned rats with more extensive VM matter sparing (ipsilateral-to-contralateral white matter ratio=0.55+/-0.05), respiratory deficits were indicated at 1 mo post-injury by reduced ventilation during hypercapnic challenge (p<0.05 vs. uninjured). Anterograde (ventral respiratory column-to-spinal cord) neuroanatomical tracing studies showed that descending respiratory projections from the brainstem are present in VM tissue. We conclude that even relatively minimal sparing of VM tissue after C2 hemilesion can alter respiratory outcomes. In addition, respiratory deficits can emerge in the adult rat after high cervical SCI even when relatively extensive VM sparing occurs.


Respiratory Physiology & Neurobiology | 2009

Respiratory recovery following high cervical hemisection

Milapjit S. Sandhu; Brendan J. Dougherty; Michael A. Lane; Donald C. Bolser; P.A. Kirkwood; Paul J. Reier; David D. Fuller

In this paper we review respiratory recovery following C2 spinal cord hemisection (C2HS) and introduce evidence for ipsilateral (IL) and contralateral (CL) phrenic motor neuron (PhrMN) synchrony post-C2HS. Rats have rapid, shallow breathing after C2HS but ventilation ( logical or (E)) is maintained. logical or (E) deficits occur during hypercapnic challenge reflecting reduced tidal volume (VT), but modest recovery occurs by 12 wks post-injury. IL PhrMN activity recovers in a time-dependent manner after C2HS, and neuroanatomical evidence suggests that this may involve both mono- and polysynaptic pathways. Accordingly, we used cross-correlation to examine IL and CL PhrMN synchrony after C2HS. Uninjured rats showed correlogram peaks consistent with synchronous activity and common synaptic input. Correlogram peaks were absent at 2 wks post-C2HS, but by 12 wks 50% of rats showed peaks occurring with a 1.1+/-0.19ms lag from zero on the abscissa. These data are consistent with prolonged conduction time to IL (vs. CL) PhrMNs and the possibility of polysynaptic inputs to IL PhrMNs after chronic C2HS.


Experimental Neurology | 2010

Neuronal progenitor transplantation and respiratory outcomes following upper cervical spinal cord injury in adult rats

Todd E. White; Michael A. Lane; Milapjit S. Sandhu; Barbara E. O'Steen; David D. Fuller; Paul J. Reier

Despite extensive gray matter loss following spinal cord injury (SCI), little attention has been given to neuronal replacement strategies and their effects on specific functional circuits in the injured spinal cord. In the present study, we assessed breathing behavior and phrenic nerve electrophysiological activity following transplantation of microdissected dorsal or ventral pieces of rat fetal spinal cord tissue (FSC(D) or FSC(V), respectively) into acute, cervical (C2) spinal hemisections. Transneuronal tracing demonstrated connectivity between donor neurons from both sources and the host phrenic circuitry. Phrenic nerve recordings revealed differential effects of dorsally vs. ventrally derived neural progenitors on ipsilateral phrenic nerve recovery and activity. These initial results suggest that local gray matter repair can influence motoneuron function in targeted circuits following spinal cord injury and that outcomes will be dependent on the properties and phenotypic fates of the donor cells employed.


Molecular Therapy | 2014

Sustained Correction of Motoneuron Histopathology Following Intramuscular Delivery of AAV in Pompe Mice

Mai K. ElMallah; Darin J. Falk; Sushrusha Nayak; Roland A Federico; Milapjit S. Sandhu; Amy Poirier; Barry J. Byrne; David D. Fuller

Pompe disease is an autosomal recessive disorder caused by mutations in the acid-α glucosidase (GAA) gene. Lingual dysfunction is prominent but does not respond to conventional enzyme replacement therapy (ERT). Using Pompe (Gaa(-/-)) mice, we tested the hypothesis that intralingual delivery of viral vectors encoding GAA results in GAA expression and glycogen clearance in both tongue myofibers and hypoglossal (XII) motoneurons. An intralingual injection of an adeno-associated virus (AAV) vector encoding GAA (serotypes 1 or 9; 1 × 10(11) vector genomes, CMV promoter) was performed in 2-month-old Gaa(-/-) mice, and tissues were harvested 4 months later. Both serotypes robustly transduced tongue myofibers with histological confirmation of GAA expression (immunochemistry) and glycogen clearance (Period acid-Schiff stain). Both vectors also led to medullary transgene expression. GAA-positive motoneurons did not show the histopathologic features which are typical in Pompe disease and animal models. Intralingual injection with the AAV9 vector resulted in approximately threefold more GAA-positive XII motoneurons (P < 0.02 versus AAV1); the AAV9 group also gained more body weight over the course of the study (P < 0.05 versus AAV1 and sham). We conclude that intralingual injection of AAV1 or AAV9 drives persistent GAA expression in tongue myofibers and motoneurons, but AAV9 may more effectively target motoneurons.


Frontiers in Physiology | 2011

Hypoglossal neuropathology and respiratory activity in Pompe mice

Kun Ze Lee; Kai Qiu; Milapjit S. Sandhu; Mai K. ElMallah; Darin J. Falk; Michael A. Lane; Paul J. Reier; Barry J. Byrne; David D. Fuller

Pompe disease is a lysosomal storage disorder associated with systemic deficiency of acid α-glucosidase (GAA). Respiratory-related problems in Pompe disease include hypoventilation and upper airway dysfunction. Although these problems have generally been attributed to muscular pathology, recent work has highlighted the potential role of central nervous system (CNS) neuropathology in Pompe motor deficiencies. We used a murine model of Pompe disease to test the hypothesis that systemic GAA deficiency is associated with hypoglossal (XII) motoneuron pathology and altered XII motor output during breathing. Brainstem tissue was harvested from adult Gaa−/− mice and the periodic acid Schiff method was used to examine neuronal glycogen accumulation. Semi-thin (2 μm) plastic sections showed widespread medullary neuropathology with extensive cytoplasmic glycogen accumulation in XII motoneuron soma. We next recorded efferent XII bursting in anesthetized and ventilated Gaa−/− and B6/129 mice both before and after bilateral vagotomy. The coefficient of variation of respiratory cycle duration was greater in Gaa−/− compared to B6/129 mice (p < 0.01). Vagotomy caused a robust increase in XII inspiratory burst amplitude in B6/129 mice (239 ± 44% baseline; p < 0.01) but had little impact on burst amplitude in Gaa−/− mice (130 ± 23% baseline; p > 0.05). We conclude that CNS GAA deficiency results in substantial glycogen accumulation in XII motoneuron cell bodies and altered XII motor output. Therapeutic strategies targeting the CNS may be required to fully correct respiratory-related deficits in Pompe disease.


Respiratory Physiology & Neurobiology | 2008

Ventilation and phrenic output following high cervical spinal hemisection in male vs. female rats.

N.J. Doperalski; Milapjit S. Sandhu; Ryan W. Bavis; Paul J. Reier; David D. Fuller

Female sex hormones influence the neural control of breathing and may impact neurologic recovery from spinal cord injury. We hypothesized that respiratory recovery after C2 spinal hemisection (C2HS) differs between males and females and is blunted by prior ovariectomy (OVX) in females. Inspiratory tidal volume (VT), frequency (fR), and ventilation (VE) were quantified during quiet breathing (baseline) and 7% CO2 challenge before and after C2HS in unanesthetized adult rats via plethysmography. Baseline breathing was similarly altered in all rats (reduced VT, elevated fR) but during hypercapnia females had relatively higher VT (i.e. compared to pre-injury) than male or OVX rats (p<0.05). Phrenic neurograms recorded in anesthetized rats indicated that normalized burst amplitude recorded ipsilateral to C2HS (i.e. the crossed phrenic phenomenon) is greater in females during respiratory challenge (p<0.05 vs. male and OVX). We conclude that sex differences in recovery of VT and phrenic output are present at 2 weeks post-C2HS. These differences are consistent with the hypothesis that ovarian sex hormones influence respiratory recovery after cervical spinal cord injury.


Journal of Applied Physiology | 2010

Influence of vagal afferents on supraspinal and spinal respiratory activity following cervical spinal cord injury in rats

Kun Ze Lee; Milapjit S. Sandhu; Brendan J. Dougherty; Paul J. Reier; David D. Fuller

C(2) spinal hemisection (C2HS) interrupts ipsilateral bulbospinal pathways and induces compensatory increases in contralateral spinal and possibly supraspinal respiratory output. Our first purpose was to test the hypothesis that after C2HS contralateral respiratory motor outputs become resistant to vagal inhibitory inputs associated with lung inflation. Bilateral phrenic and contralateral hypoglossal (XII) neurograms were recorded in anesthetized and ventilated rats. In uninjured (control) rats, lung inflation induced by positive end-expired pressure (PEEP; 3-9 cmH(2)O) robustly inhibited both phrenic and XII bursting. At 2 wk post-C2HS, PEEP evoked a complex response associated with phrenic bursts of both reduced and augmented amplitude, but with no overall change in the mean burst amplitude. PEEP-induced inhibition of XII bursting was still present but was attenuated relative to controls. However, by 8 wk post-C2HS PEEP-induced inhibition of both phrenic and XII output were similar to that in controls. Our second purpose was to test the hypothesis that vagal afferents inhibit ipsilateral phrenic bursting, thereby limiting the incidence of the spontaneous crossed phrenic phenomenon in vagal-intact rats. Bilateral vagotomy greatly enhanced ipsilateral phrenic bursting, which was either weak or absent in vagal-intact rats at both 2 and 8 wk post-C2HS. We conclude that 1) compensatory increases in contralateral phrenic and XII output after C2HS blunt the inhibitory influence of vagal afferents during lung inflation and 2) vagal afferents robustly inhibit ipsilateral phrenic bursting. These vagotomy data appear to explain the variability in the literature regarding the onset of the spontaneous crossed phrenic phenomenon in spontaneously breathing (vagal intact) vs. ventilated (vagotomized) preparations.


Experimental Neurology | 2013

Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury

Kun Ze Lee; Brendan J. Dougherty; Milapjit S. Sandhu; Michael A. Lane; Paul J. Reier; David D. Fuller

Cervical spinal cord injury (SCI) dramatically disrupts synaptic inputs and triggers biochemical, as well as morphological, plasticity in relation to the phrenic motor neuron (PhMN) pool. Accordingly, our primary purpose was to determine if chronic SCI induces fundamental changes in the recruitment profile and discharge patterns of PhMNs. Individual PhMN action potentials were recorded from the phrenic nerve ipsilateral to lateral cervical (C2) hemisection injury (C2Hx) in anesthetized adult male rats at 2, 4 or 8 wks post-injury and in uninjured controls. PhMNs were phenotypically classified as early (Early-I) or late inspiratory (Late-I), or silent according to discharge patterns. Following C2Hx, the distribution of PhMNs was dominated by Late-I and silent cells. Late-I burst parameters (e.g., spikes per breath, burst frequency and duration) were initially reduced but returned towards control values by 8wks post-injury. In addition, a unique PhMN burst pattern emerged after C2Hx in which Early-I cells burst tonically during hypocapnic inspiratory apnea. We also quantified the impact of gradual reductions in end-tidal CO2 partial pressure (PETCO2) on bilateral phrenic nerve activity. Compared to control rats, as PETCO2 declined, the C2Hx animals had greater inspiratory frequencies (breaths∗min(-1)) and more substantial decreases in ipsilateral phrenic burst amplitude. We conclude that the primary physiological impact of C2Hx on ipsilateral PhMN burst patterns is a persistent delay in burst onset, transient reductions in burst frequency, and the emergence of tonic burst patterns. The inspiratory frequency data suggest that plasticity in brainstem networks is likely to play an important role in phrenic motor output after cervical SCI.


Experimental Neurology | 2014

Intraspinal transplantation and modulation of donor neuron electrophysiological activity

Kun Ze Lee; Michael A. Lane; Brendan J. Dougherty; Lynne M. Mercier; Milapjit S. Sandhu; Justin C. Sanchez; Paul J. Reier; David D. Fuller

Rat fetal spinal cord (FSC) tissue, naturally enriched with interneuronal progenitors, was introduced into high cervical, hemi-resection (Hx) lesions. Electrophysiological analyses were conducted to determine if such grafts exhibit physiologically-patterned neuronal activity and if stimuli which increase respiratory motor output also alter donor neuron bursting. Three months following transplantation, the bursting activity of FSC neurons and the contralateral phrenic nerve were recorded in anesthetized rats during a normoxic baseline period and brief respiratory challenges. Spontaneous neuronal activity was detected in 80% of the FSC transplants, and autocorrelation of action potential spikes revealed distinct correlogram peaks in 87% of neurons. At baseline, the average discharge frequency of graft neurons was 13.0 ± 1.7 Hz, and discharge frequency increased during a hypoxic respiratory challenge (p<0.001). Parallel studies in unanesthetized rats showed that FSC tissue recipients had larger inspiratory tidal volumes during brief hypoxic exposures (p<0.05 vs. C2Hx rats). Anatomical connectivity was explored in additional graft recipients by injecting a transsynaptic retrograde viral tracer (pseudorabies virus, PRV) directly into matured transplants. Neuronal labeling occurred throughout graft tissues and also in the host spinal cord and brainstem nuclei, including those associated with respiratory control. These results underscore the neuroplastic potential of host-graft interactions and training approaches to enhance functional integration within targeted spinal circuitry.

Collaboration


Dive into the Milapjit S. Sandhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brendan J. Dougherty

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun-Ze Lee

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge