Milen Nachev
University of Duisburg-Essen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milen Nachev.
Parasitology | 2009
Milen Nachev; Bernd Sures
SUMMARY Infection of barbel with 10 species of metazoan parasites including 3 trematodes, 3 acanthocephalans and 4 nematodes was observed in fish collected from 3 localities in the Bulgarian part of the river Danube between summer 2004 and summer 2007. The composition as well as the diversity characteristics of the parasite communities were analysed seasonally and showed a clear correlation with the composition of the invertebrate fauna and water quality. The most prevalent species was the acanthocephalan Pomphorhynchus laevis, which was also the dominant species of the intestinal component communities at all sampling sites. The second most frequent parasite at all Danube localities was Rhabdochona hellichi, which occurred in significantly higher numbers at the less polluted sites. Overall, the diversity of helminth communities increased with decreasing levels of nutrients and pollutants at all sampling sites. Therefore, the composition and diversity of parasite communities may be used to characterize ecosystem health and integrity.
Parasites & Vectors | 2013
Milen Nachev; Gerhard Schertzinger; Bernd Sures
BackgroundMetal uptake and accumulation in fish parasites largely depends on the parasite group with acanthocephalans showing the highest accumulation rates. Additionally, developmental stage (larvae or adult) as well as parasite location in the host are suggested to be decisive factors for metal bioconcentration in parasites. By using barbel (Barbus barbus) simultaneously infected with nematode larvae in the body cavity and adult acanthocephalans in the intestine, the relative importance of all of these factors was compared in the same host.MethodsEleven elements Arsenic (As), Cadmium (Cd), Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Lead (Pb), Selenium (Se), Tin (Sn), Vanadium (V) and Zinc (Zn) were analyzed in barbel tissues (muscle, intestine, liver) as well as in their acanthocephalan parasites Pomphorhynchus laevis and the larval nematode Eustrongylides sp. (L4) using inductively coupled plasma mass spectrometry (ICP-MS).ResultsNine elements were detected in significantly higher levels in the parasites compared to host tissues. The element composition among parasites was found to be strongly dependent on parasite taxa/developmental stage and localization within the host. Intestinal acanthocephalans accumulated mainly toxic elements (As, Cd, Pb), whereas the intraperitoneal nematodes bioconcentrated essential elements (Co, Cu, Fe, Se, Zn).ConclusionOur results suggest that in addition to acanthocephalans, nematodes such as Eustrongylides sp. can also be applied as bioindicators for metal pollution. Using both parasite taxa simultaneously levels of a wide variety of elements (essential and non essential) can easily be obtained. Therefore this host-parasite system can be suggested as an appropriate tool for future metal monitoring studies, if double infected fish hosts are available.
Parasitology | 2010
Milen Nachev; Sonja Zimmermann; Thierry Rigaud; Bernd Sures
Concentrations of the elements As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sn, V, Zn were analysed by inductively coupled plasma mass spectrometry (ICP-MS) in the acanthocephalan Pomphorhynchus laevis and its fish host Barbus barbus. A total of 27 barbels were collected from the Danube River in autumn 2006 close to the town Kozloduy (685 river kilometer) on the Bulgarian river bank. Fish were divided into 3 groups. According to their P. laevis infrapopulation size hosts were considered as heavily infected (>100 worms per fish) and lightly infected (<20 worms per fish). The third group was used to compare heavy metal concentrations between male and female P. laevis. The 5 elements As, Cd, Cu, Pb and Zn were detected in significantly higher concentrations in parasites compared to host tissues (muscle, intestine, liver). According to the calculated mean bioconcentration factors, 3 more elements (Co, Mn, V) showed usually higher concentrations in P. laevis. Comparisons between heavily and lightly infected fish revealed significant differences only for V with higher concentrations for the heavily infected group. Concerning sex-specific metal accumulation V and Zn showed significant differences (V, at P<0.05; Zn, at P=0.05), with higher levels of both metals in females of P. laevis. Our results suggest that - for the metals analysed - the size of the parasite infrapopulation plays no role in the degree of metal accumulation. Similarly, parasite sex seems not to be a crucial factor for metal accumulation in the parasites. Thus, for metal monitoring purposes there is no need to take these aspects into account, which makes the use of parasites as bioindicators more applicable.
Nano Research | 2016
Andreas Blaeser; Nina Million; Daniela Filipa Duarte Campos; Lisa Gamrad; Marius Köpf; Christoph Rehbock; Milen Nachev; Bernd Sures; Stephan Barcikowski; Horst Fischer
Alginate is a widely used hydrogel in tissue engineering owing to its simple and non-cytotoxic gelation process, ease of use, and abundance. However, unlike hydrogels derived from mammalian sources such as collagen, alginate does not contain cell adhesion ligands. Here, we present a novel laser ablation technique for the in situ embedding of gold and iron nanoparticles into hydrogels. We hypothesized that integration of metal nanoparticles in alginate could serve as an alternative material because of its chemical biofunctionalization ability (coupling of RGD ligands) to favor cell adhesion. Cytocompatibility and biofunctionality of the gels were assessed by cell culture experiments using fibroblasts and endothelial cells. Nanoparticles with an average particle size of 3 nm (gold) and 6 nm (iron) were generated and stably maintained in alginate for up to 6 months. Using an extrusion system, several centimeter-long alginate tubes with an outer diameter of approximately 3 mm and a wall thickness of approximately 150 μm were manufactured. Confocal microscopy revealed homogeneously distributed nanoparticle agglomerates over the entire tube volume. Endothelial cells seeded on iron-loaded gels showed significantly higher viability and an increased degree of spreading, and the number of attached cells was also elevated in comparison to the control and gold-loaded alginates. We conclude that laser-based in situ integration of iron nanoparticles (⩽0.01 wt.%) in alginate is a straightforward method to generate composite materials that favor the adhesion of endothelial cells. In addition, we show that nanoparticle integration does not impair the alginate’s gelation and 3D biofabrication properties.
PLOS ONE | 2016
T.T. Yen Le; Milen Nachev; Daniel S. Grabner; A. Jan Hendriks; Bernd Sures
Because of different reported effects of parasitism on the accumulation of metals in fish, it is important to consider parasites while interpreting bioaccumulation data from biomonitoring programmes. Accordingly, the first step is to take parasitism into consideration when simulating metal bioaccumulation in the fish host under laboratory conditions. In the present study, the accumulation of metals in fish-parasite systems was simulated by a one-compartment toxicokinetic model and compared to uninfected conspecifics. As such, metal accumulation in fish was assumed to result from a balance of different uptake and loss processes depending on the infection status. The uptake by parasites was considered an efflux from the fish host, similar to elimination. Physiological rate constants for the uninfected fish were parameterised based on the covalent index and the species weight while the parameterisation for the infected fish was carried out based on the reported effects of parasites on the uptake kinetics of the fish host. The model was then validated for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticollis following 36-day exposure to waterborne Pb. The dissolved concentration of Pb in the exposure tank water fluctuated during the exposure, ranging from 40 to 120 μg/L. Generally, the present study shows that the one-compartment model can be an effective method for simulating the accumulation of metals in fish, taking into account effects of parasitism. In particular, the predicted concentrations of Cu, Fe, Zn, and Pb in the uninfected chub as well as in the infected chub and the acanthocephalans were within one order of magnitude of the measurements. The variation in the absorption efficiency and the elimination rate constant of the uninfected chub resulted in variations of about one order of magnitude in the predicted concentrations of Pb. Inclusion of further assumptions for simulating metal accumulation in the infected chub led to variations of around two orders of magnitude in the predictions. Therefore, further research is required to reduce uncertainty while characterising and parameterising the model for infected fish.
PLOS ONE | 2014
Daniel S. Grabner; Faten A. M. M. Mohamed; Milen Nachev; Eman M.H. Méabed; Abdel Hameed A. Sabry; Bernd Sures
The liver fluke Fasciola gigantica is a trematode parasite of ruminants and humans that occurs naturally in Africa and Asia. Cases of human fascioliasis, attributable at least in part to F. gigantica, are significantly increasing in the last decades. The introduced snail species Galba truncatula was already identified to be an important intermediate host for this parasite and the efficient invader Pseudosuccinea columella is another suspect in this case. Therefore, we investigated snails collected in irrigation canals in Fayoum governorate in Egypt for prevalence of trematodes with focus on P. columella and its role for the transmission of F. gigantica. Species were identified morphologically and by partial sequencing of the cytochrome oxidase subunit I gene (COI). Among all 689 snails found at the 21 sampling sites, P. columella was the most abundant snail with 296 individuals (42.96%) and it was also the most dominant species at 10 sites. It was not found at 8 sites. Molecular detection by PCR and sequencing of the ITS1-5.8S-ITS2 region of the ribosomal DNA (rDNA) revealed infections with F. gigantica (3.38%), Echinostoma caproni (2.36%) and another echinostome (7.09%) that could not be identified further according to its sequence. No dependency of snail size and trematode infection was found. Both high abundance of P. columella in the Fayoum irrigation system and common infection with F. gigantica might be a case of parasite spill-back (increased prevalence in local final hosts due to highly susceptible introduced intermediate host species) from the introduced P. columella to the human population, explaining at least partly the observed increase of reported fascioliasis-cases in Egypt. Eichhornia crassipes, the invasive water hyacinth, which covers huge areas of the irrigation canals, offers safe refuges for the amphibious P. columella during molluscicide application. As a consequence, this snail dominates snail communities and efficiently transmits F. gigantica.
Parasites & Vectors | 2017
Milen Nachev; Maik A. Jochmann; Friederike Walter; J. Benjamin Wolbert; S. Marcel Schulte; Torsten C. Schmidt; Bernd Sures
BackgroundStable isotope analysis of carbon and nitrogen can deliver insights into trophic interactions between organisms. While many studies on free-living organisms are available, the number of those focusing on trophic interactions between hosts and their associated parasites still remains scarce. In some cases information about taxa (e.g. acanthocephalans) is completely missing. Additionally, available data revealed different and occasionally contrasting patterns, depending on the parasite’s taxonomic position and its degree of development, which is most probably determined by its feeding strategy (absorption of nutrients through the tegument versus active feeding) and its localization in the host.MethodsUsing stable isotope analysis of carbon and nitrogen we provided first data on the trophic position of an acanthocephalan species with respect to its fish host. Barbels (Barbus barbus) infected only with adult acanthocephalans Pomphorhynchus laevis as well as fish co-infected with the larval (L4) nematodes Eustrongylides sp. from host body cavity were investigated in order to determine the factors shaping host-parasite trophic interactions. Fish were collected in different seasons, to study also potential isotopic shifts over time, whereas barbels with single infection were obtained in summer and co-infected ones in autumn.ResultsAcanthocephalans as absorptive feeders showed lower isotope discrimination values of δ15N than the fish host. Results obtained for the acanthocephalans were in line with other parasitic taxa (e.g. cestodes), which exhibit a similar feeding strategy. We assumed that they feed mainly on metabolites, which were reprocessed by the host and are therefore isotopically lighter. In contrast, the nematodes were enriched in the heavier isotope δ15N with respect to their host and the acanthocephalans, respectively. As active feeders they feed on tissues and blood in the body cavity of the host and thus showed isotope discrimination patterns resembling those of predators. We also observed seasonal differences in the isotope signatures of fish tissues and acanthocephalans, which were attributed to changes in food composition of the host and to seasonality in the transmission and development of acanthocephalans.ConclusionsThis study provided first data on trophic interaction between an acanthocephalan species and its associated host, which support the tendency already described for other taxa with similar nutrition strategy (e.g. cestodes). Actively feeding taxa such as larval Eustrongylides sp., appear to act like predators as it can be seen from their isotope discrimination values. However, future research on additional host-parasite systems and especially on acanthocephalans is needed in order to corroborate these conclusions.
PeerJ | 2015
Hui-Yu Chen; Daniel S. Grabner; Milen Nachev; Hsiu-Hui Shih; Bernd Sures
Amphipods are commonly parasitized by acanthocephalans and microsporidians and co-infections are found frequently. Both groups of parasites are known to have severe effects on their host. For example, microsporidians can modify host sex ratio and acanthocephalans can manipulate the behavior of the amphipod to promote transmission to the final host. These effects influence host metabolism in general and will also affect the ability of amphipods to cope with additional stressors such as environmental pollution, e.g., by toxic metals. Here we tested the effects of sub-lethal concentrations of cadmium on glycogen and lipid levels, as well as on the 70kDa heat shock protein (hsp70) response of field collected Gammarus fossarum, which were naturally infected with microsporidians and the acanthocephalan Polymorphus minutus. Infected and uninfected G. fossarum were exposed to a nominal Cd concentration of 4 µg/L, which resembled measured aqueous Cd concentration of 2.9 µg/L in reconstituted water for 7 d at 15 °C in parallel to an unexposed control. After exposure gammarids were snap frozen, weighed, sexed and tested for microsporidian infection by PCR. Only individuals containing the microsporidian Dictyocoela duebenum were used for the further biochemical and metal analyses. P. minutus infected amphipods were significantly smaller than their uninfected conspecifics. Mortality was insignificantly increased due to cadmium exposure, but not due to parasite infection. Microsporidian infection in combination with cadmium exposure led to increased glycogen levels in female gammarids. An increase of glycogen was also found due to interaction of acanthocephalan and microsporidian infection. Elevated lipid levels were observed in all groups infected with microsporidians, while acanthocephalans had the opposite effect. A positive correlation of lipid and glycogen levels was observed. The general stress response measured in form of hsp70 was significantly increased in microsporidian infected gammarids exposed to cadmium. P. minutus did not affect the stress response of its host. Lipid levels were correlated negatively with hsp70 response, and indicated a possible increased stress susceptibility of individuals with depleted energy reserves. The results of our study clearly demonstrate the importance of parasitic infections, especially of microsporidians, for ecotoxicological research.
Parasites & Vectors | 2016
Milen Nachev; Bernd Sures
BackgroundA large number of studies demonstrated that acanthocephalans exhibit a high metal accumulation potential and thus can be used as sensitive accumulation indicators. However, similar to free-living bioindicators, a seasonal variation in metal concentrations in parasites might occur. Accordingly, the influence of seasonality has to be elucidated if parasites should be applied as sentinels.MethodsIn order to assess a possible seasonal profile of element concentrations, the concentrations of As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn in the acanthocephalan Pomphorhynchus laevis and in its host barbel (Barbus barbus) were analysed in a seasonal manner (spring, summer and autumn) using inductively coupled plasma mass spectrometry (ICP-MS).ResultsFive elements (As, Cd, Cu, Pb and Zn) were detected in significantly higher concentrations in the parasites compared to host muscle, intestine and liver. Their levels in P. laevis showed a clear seasonal pattern, while the concentrations in the fish tissues remained similar during the year. The highest concentrations in the parasites were found in autumn, followed by spring and summer. Evidence from the literature suggests that this profile coincides with the seasonality of acanthocephalan transmission, as their annual concentration profile reflected the mean individual weight pattern during the year. Parasite infrapopulations in autumn consisted mainly of young worms which are characterised by an accelerated metabolism and a higher surface to volume ratio resulting in higher element concentrations when compared to older worms which are assumed to slow down their metabolism and additionally excrete metals with their eggs.ConclusionsBased on the available data from the present study and literature, a model is suggested, which visualises the accumulation kinetic of several elements under natural conditions. According to the element accumulation data the lifespan of P. laevis in barbel was roughly estimated to range between six and eight months.
Urban Ecosystems | 2018
Stefan Brunzel; Jacinta Kellermann; Milen Nachev; Bernd Sures; Daniel Hering
In urban areas, the potential of biomass production is rarely utilized, although many biomass sources are located in cities, ranging from road margins to public parks. There is, however, increasing interest in these potential biomass sources, as they are close to consumers and provide options to reduce maintenance costs of urban green areas. We analyzed the costs and benefits of utilizing biomass, and compared it to the biodiversity maintained on 17 urban land use forms the Ruhr Metropolitan Area (Germany). Economic costs and benefits were reflected by contribution margins, while biodiversity was measured by species numbers of plants, birds and butterflies. For the 17 land use types, there is a weak overall correlation between contribution margins and species numbers. However, this is mainly due to the two land use forms with the highest contribution margins (cultivation of energy maize and fertilized grassland), which are characterized by the lowest species numbers. For the remaining cases, there is no relationship between contribution margins and species numbers. Comparatively high contribution margins and high mean species numbers were observed for road margins, industrial fallows with wood cutting for biogas production and water-influenced grassland mown traditionally. We conclude that biomass production and the maintenance of urban biodiversity is not necessarily a contradiction.