Milena Brasca
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milena Brasca.
Journal of Applied Microbiology | 2007
Milena Brasca; S. Morandi; R. Lodi; Alberto Tamburini
Aims: To verify to what degree reducing capacity is a characterizing parameter of a species, and of the strains themselves within a given species, of lactic acid bacteria.
Letters in Applied Microbiology | 2007
P. Cremonesi; G. Perez; G. Pisoni; P. Moroni; Stefano Morandi; Massimo Luzzana; Milena Brasca; Bianca Castiglioni
Aim: To develop an easy, rapid and efficient DNA extraction procedure for Staphylococcus aureus detection with a low number of steps and removing completely the PCR inhibitors, applicable to raw milk cheese samples, and to compare phenotypical and genotypical method to detect Staph. aureus isolates and staphylococcal enterotoxins (SEs) production.
International Journal of Microbiology | 2009
Stefano Morandi; Milena Brasca; Cristian Andrighetto; Angiolella Lombardi; Roberta Lodi
Staphylococcus aureus is a known major cause of foodborne illnesses, and milk and dairy products are often contaminated by enterotoxigenic strains of this bacterium. In the present study, 122 S. aureus isolates collected from different dairy products were characterised by phenotypic properties, by the distribution of genes encoding staphylococcal enterotoxins (sea, sec, sed, seg, seh, sei, sej, and sel) and by randomly amplified polymorphic DNA PCR (RAPD-PCR). Moreover, strain resistance to vancomycin and methicillin (oxacillin) was studied. The differences in the RAPD-PCR profiles obtained with the primers M13 and AP4 revealed the presence of a great genetic heterogeneity among the different S. aureus strains. Using the primer AP4 and M13, eight groups were distinguished by RAPD-PCR cluster analysis, although, except in few cases, it was not possible to correlate the isolates of different animal species (cow or ovine) with the presence of se genes. None of the isolates showed resistance to vancomycin or methicillin.
Journal of Dairy Research | 2011
Luciana Bava; Maddalena Zucali; Anna Sandrucci; Milena Brasca; Laura Vanoni; L. Zanini; Alberto Tamburini
The aim of the study was to describe the characteristics of cleaning procedures for milking equipment applied in intensive dairy farms in Lombardy (Italy) and to study their relationships with bacterial count of bulk milk and hygienic condition of milking machine components. A group of 22 dairy farms was visited twice (winter and summer) in order to collect bulk tank milk and post-rinse water samples and swabs from liners and milk receiver. Samples were analysed to determine: standard plate count (SPC), laboratory pasteurization count (LPC), psychrotrophic bacteria count (PBC), coliform count (CC) and Escherichia coli. Cleaning procedures were monitored using electronic milk flow meters with specific software for the measurement of the duration of each cleaning phase, circulating solution temperature and electrical conductivity, turbulence and water filling percentage of pipelines. The results showed that farms classified as high and low milk total bacteria count significantly differed both in terms of liners and receiver bacterial contamination and in terms of water temperature reached during the detergent phase of cleaning milking equipment. Significant positive correlations were found among total bacteria count in milk and bacterial contamination of the liners. Maximum water temperature reached during the cleaning cycle of milking equipment was very low (34.4±8.9°C on average); most of the observations (88.6%) corresponded to water temperatures <45°C. Cleaning temperature was related to psychrotrophic bacteria count of milk and post-rinse water and coliform count in liners. Routine check and regulation of water temperature during the washing phase of the milking machine can be a simple and effective way to control one of the main risk factors for bacteriological quality of bulk tank milk.
Journal of Food Science | 2014
Marilù Decimo; Stefano Morandi; Tiziana Silvetti; Milena Brasca
Eighty psychrotrophic bacterial strains, isolated from different northwest Italian bulk tank milks destined for Grana Padano cheese production, were identified by 16S rRNA gene amplification and partial sequence analysis of the rpoB gene. Pseudomonas spp. were the most commonly occurring contaminants, P. fluorescens being the predominant isolated species, along with Enterobacteriaceae, primarily Serratia marcescens. RAPD-PCR was used to study genetic variability and distinguish closely related strains; a high degree of genetic heterogeneity among the strains was highlighted. All the strains were characterized for their ability to produce proteases, lipases and lecithinases at different temperatures (7, 22, and 30 °C). Forty-one of the psychrotrophic strains were positive for all the enzymatic activities. The highest number of positive strains for all the incubation temperatures was found for lipolytic activity (59), followed by proteolytic (31) and lecithinase (28) activities, and the enzymatic traits varied among the Pseudomonas and Enterobacteriaceae strains. The proteolytic psychrotrophic strains were screened for the presence of the aprX gene, coding for a heat-resistant metalloprotease in Pseudomonas spp. The aprX gene was detected in 19 of 63 Pseudomonas strains, and was widespread in the P. fluorescens strains (14/19). PRATICAL APPLICATION: The study provides new data on the enzymatic activity of Gram-negative psychrotrophic bacteria, useful in developing strategies to control the proteo-lipolytic spoilage of raw and processed milk that causes gelation, off-flavors, and loss of sensory quality and shelf life.
Journal of Dairy Research | 2012
Paola Cremonesi; Laura Vanoni; Tiziana Silvetti; Stefano Morandi; Milena Brasca
Late blowing, caused by the outgrowth of clostridial spores present in raw milk and originating from silage, can create considerable product loss, especially in the production of hard and semi-hard cheeses. The conventional method for the isolation of Clostridium spp. from cheeses with late-blowing symptoms is very complicated and the identification of isolates is problematic. The aim of this work was the development of a multiplex PCR method for the detection of the main dairy-related clostridia such as: Cl. beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum. Samples derived from silage, raw milk and hard cheese were analysed by the most probable number (MPN) enumeration. Forty-four bacterial strains isolated from gas positive tubes were used to check the reliability of the multiplex PCR assay. The specificity of the primers was tested by individually analysing each primer pair and the primer pair combined in the multiplex PCR. It was interesting to note that the samples not identified by the multiplex PCR assay were amplified by V2-V3 16S rRNA primer pair and the sequencing revealed the aligned 16S rRNA sequences to be Paenibacillus and Bacillus spp. This new molecular assay provides a simple promising alternative to traditional microbiological methods for a rapid, sensitive detection of clostridia in dairy products.
Journal of Dairy Research | 2011
Maddalena Zucali; Luciana Bava; Alberto Tamburini; Milena Brasca; Laura Vanoni; Anna Sandrucci
The aim of the study was to investigate the effects of season, cow cleanliness and milking routine on bacterial and somatic cell counts of bulk tank milk. A total of 22 dairy farms in Lombardy (Italy) were visited three times in a year in different seasons. During each visit, samples of bulk tank milk were taken for bacterial and somatic cell counts; swabs from the teat surface of a group of cows were collected after teat cleaning and before milking. Cow cleanliness was assessed by scoring udder, flanks and legs of all milking cows using a 4-point scale system. Season affected cow cleanliness with a significantly higher percentage of non-clean (NC) cows during Cold compared with Mild season. Standard plate count (SPC), laboratory pasteurization count (LPC), coliform count (CC) and somatic cell count, expressed as linear score (LS), in milk significantly increased in Hot compared with Cold season. Coagulase-positive staphylococci on teat swabs showed higher counts in Cold season in comparison with the other ones. The effect of cow cleanliness was significant for SPC, psychrotrophic bacterial count (PBC), CC and Escherichia coli in bulk tank milk. Somatic cell count showed a relationship with udder hygiene score. Milking operation routine strongly affected bacterial counts and LS of bulk tank milk: farms that accomplished a comprehensive milking scheme including two or more operations among forestripping, pre-dipping and post-dipping had lower teat contamination and lower milk SPC, PBC, LPC, CC and LS than farms that did not carry out any operation.
International Journal of Systematic and Evolutionary Microbiology | 2012
Stefano Morandi; Paola Cremonesi; Milena Povolo; Milena Brasca
Ten atypical Enterococcus strains were isolated from Italian raw milk cheeses. The 16S rRNA gene, phenylalanyl-tRNA synthase alpha subunit (pheS), RNA polymerase alpha subunit (rpoA) and the 16S-23S rRNA intergenic transcribed spacer (ITS) sequences, randomly amplified polymorphic DNA (RAPD) PCR and the phenotypic properties revealed that the isolates represent a novel enterococcal species. On the basis of 16S rRNA gene sequence analysis, the isolates were closely related to Enterococcus hirae ATCC 8043(T), Enterococcus durans CECT 411(T) and Enterococcus faecium ATCC 19434(T), with 98.8, 98.9 and 99.4% sequence similarity, respectively. On the basis of sequence analysis of the housekeeping gene pheS, the reference strain, BT159(T), occupied a position separate from E. faecium LMG 16198. The group of isolates could be easily differentiated from recognized species of the genus Enterococcus by 16S-23S rRNA ITS analysis, RAPD-PCR and phenotypic characteristics. The name Enterococcus lactis sp. nov. is proposed, with BT159(T) ( = DSM 23655(T) = LMG 25958(T)) as the type strain.
Journal of the Science of Food and Agriculture | 2015
Maddalena Zucali; Luciana Bava; Stefania Colombini; Milena Brasca; Marilù Decimo; Stefano Morandi; Alberto Tamburini; G. Matteo Crovetto
BACKGROUND Anaerobic spore-forming bacteria (ASFB) in milk derive from the farm environment, and the use of silages and management practices are the main responsible of milk ASFB contamination. The aim of this study was to evaluate the relationships between feeding, milking routine and cow hygiene and milk and Grana Padano cheese (produced with and without lysozyme) ASFB contamination. RESULTS The study involved 23 dairy farms. ASFB in corn silage were on average 2.34 ± 0.87 log10 MPN g(-1). For grass, Italian ryegrass and alfalfa, ASFB (log10 MPN g(-1)) were numerically higher for silages (3.22) than hays (2.85). The use of corn silages of high quality (high lactic and acetic acids concentrations) decreased the milk ASFB contamination, whilst the use of herbage silages did not affect it. The presence (>40%) of cows with dirty udders increased the ASFB contamination of milk, while forestripping had a positive effect (-9% ASFB). Ripened Grana Padano had an ASFB count below the analytical limit; Clostridium tyrobutyricum DNA was found only in wheels produced without lysozyme, which also showed late blowing. CONCLUSION The factors increasing milk spore contamination were corn silage quality, cow udder hygiene and inadequate milking routine. Late blowing was present only in cheeses without lysozyme.
Molecules | 2013
Milena Brasca; Stefano Morandi; Tiziana Silvetti; Veronica Rosi; Stefano Cattaneo; L. Pellegrino
Hen egg-white lysozyme (LSZ) is currently used in the food industry to limit the proliferation of lactic acid bacteria spoilage in the production of wine and beer, and to inhibit butyric acid fermentation in hard and extra hard cheeses (late blowing) caused by the outgrowth of clostridial spores. The aim of this work was to evaluate how the enzyme activity in commercial preparations correlates to the enzyme concentration and can be affected by the presence of process-related impurities. Different analytical approaches, including turbidimetric assay, SDS-PAGE and HPLC were used to analyse 17 commercial preparations of LSZ marketed in different countries. The HPLC method adopted by ISO allowed the true LSZ concentration to be determined with accuracy. The turbidimetric assay was the most suitable method to evaluate LSZ activity, whereas SDS-PAGE allowed the presence of other egg proteins, which are potential allergens, to be detected. The analytical results showed that the purity of commercially available enzyme preparations can vary significantly, and evidenced the effectiveness of combining different analytical approaches in this type of control.