Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milena Grossi is active.

Publication


Featured researches published by Milena Grossi.


Cell | 2010

Nfix Regulates Fetal-Specific Transcription in Developing Skeletal Muscle

Graziella Messina; Stefano Biressi; Stefania Monteverde; Alessandro Magli; Marco Cassano; Laura Perani; Elena Roncaglia; Enrico Tagliafico; Linda M. Starnes; Christine E. Campbell; Milena Grossi; David J. Goldhamer; Richard M. Gronostajski; Giulio Cossu

Skeletal myogenesis, like hematopoiesis, occurs in successive developmental stages that involve different cell populations and expression of different genes. We show here that the transcription factor nuclear factor one X (Nfix), whose expression is activated by Pax7 in fetal muscle, in turn activates the transcription of fetal specific genes such as MCK and beta-enolase while repressing embryonic genes such as slow myosin. In the case of the MCK promoter, Nfix forms a complex with PKC theta that binds, phosphorylates, and activates MEF2A. Premature expression of Nfix activates fetal and suppresses embryonic genes in embryonic muscle, whereas muscle-specific ablation of Nfix prevents fetal and maintains embryonic gene expression in the fetus. Therefore, Nfix acts as a transcriptional switch from embryonic to fetal myogenesis.


Cell | 1989

Interaction with normal cells suppresses the transformed phenotype of v-myc-transformed quail muscle cells

Severina Anna La Rocca; Milena Grossi; Germana Falcone; Stefano Alemà; Franco Tatò

We have analyzed mixed cultures of normal mammalian fibroblastic cells and transformed quail myoblasts to investigate whether the presence of an excess of normal cells could suppress the phenotype of transformed quail cells. In such mixed cultures, only v-myc-transformed cells were growth-arrested, whereas v-src-transformed myoblasts were essentially unaffected. Growth arrest appeared to reflect reversion from the transformed state, including re-expression of the myogenic differentiation program. The v-myc-transformed myoblasts were phenotypically corrected also by differentiating normal quail myoblasts, giving rise to hybrid myotubes containing nuclei from both cell types. The differential behavior of transformed cells closely paralleled the efficiency with which they established metabolic cooperation with adjacent normal cells. Our results indicate that unrestrained proliferation associated with transformation is responsible for v-myc-induced block of myogenic differentiation.


Cell Cycle | 2006

E1B55K-Deleted Adenovirus (ONYX-015) Overrides G1/S and G2/M Checkpoints and Causes Mitotic Catastrophe and Endoreduplication in p53-Proficient Normal Cells

Gioia Cherubini; Tatiana Petouchoff; Milena Grossi; Stefania Piersanti; Enrico Cundari; Isabella Saggio

In order to take advantage of cell replication machinery, viruses have evolved complex strategies to override cell cycle checkpoints and force host cells into S phase. To do so, virus products must interfere not only with the basal cell cycle regulators, such as pRb or Mad2, but also with the main surveillance pathways such as those controlled by p53 and ATM. Recently, a number of defective viruses has been produced which, lacking the latter ability, are incapable of replicating in normal cells but should be able to grow and finally lyse those cells that, such as the tumor cells, have lost their surveillance mechanisms. A prototype of these oncolytic viruses is the E1B55K-defective Adenovirus ONYX-015, which was predicted to selectively replicate and kill p53-deficient cancer cells. We found that, despite wt p53 and notwithstanding the activation of the checkpoint regulators p53, ATM, and Mad2, ONYX-015 actively replicated in HUVEC cells. Furthermore, ONYX-015 replication induced a specific phenotype, which is distinct from that of the E4-deleted adenovirus dlE4 Ad5, although both viruses express the main regulatory region E1A. This phenotype includes overriding of the G1/S and G2/M checkpoints, over-expression of MAD2 and retardation of mitosis and accumulation of polyploid cells, suggesting the occurrence of alterations at the mitotic-spindle checkpoint and impairment of the post-mitotic checkpoint. Our data suggest that viral E1A and E4 region products can override all host cell-checkpoint response even at the presence of a full activation of the ATM/p53 pathway. Furthermore, the E4 region alone seems to act independently of the E1B55K virus product in impairing the ATM-dependent, p53-independent G2/M checkpoint since dlE4 Ad5-infected cells arrested in G2 while ONYX-015-infected cells did enter mitosis.


Cell Death & Differentiation | 2005

Cytotoxic necrotizing factor 1 hinders skeletal muscle differentiation in vitro by perturbing the activation/deactivation balance of Rho GTPases.

Sara Travaglione; Graziella Messina; Alessia Fabbri; Loredana Falzano; Anna Maria Giammarioli; Milena Grossi; Stefano Rufini; Carla Fiorentini

The current knowledge assigns a crucial role to the Rho GTPases family (Rho, Rac, Cdc42) in the complex transductive pathway leading to skeletal muscle cell differentiation. Their exact function in myogenesis, however, remains largely undefined. The protein toxin CNF1 was herein employed as a tool to activate Rho, Rac and Cdc42 in the myogenic cell line C2C12. We demonstrated that CNF1 impaired myogenesis by affecting the muscle regulatory factors MyoD and myogenin and the structural protein MHC expressions. This was principally driven by Rac/Cdc42 activation whereas Rho apparently controlled only the fusion process. More importantly, we proved that a controlled balance between Rho and Rac/Cdc42 activation/deactivation state was crucial for the correct execution of the differentiation program, thus providing a novel view for the role of Rho GTPases in muscle cell differentiation. Also, the use of Rho hijacking toxins can represent a new strategy to pharmacologically influence the differentiative process.


Cell Cycle | 2013

Cyclin D1 is a major target of miR-206 in cell differentiation and transformation

Alessandra Alteri; Francesca De Vito; Graziella Messina; Monica Pompili; Attilio Calconi; Paolo Visca; Marcella Mottolese; Carlo Presutti; Milena Grossi

miR-206, a member of the so-called myomiR family, is largely acknowledged as a specific, positive regulator of skeletal muscle differentiation. A growing body of evidence also suggests a tumor suppressor function for miR-206, as it is frequently downregulated in various types of cancers. In this study, we show that miR-206 directly targets cyclin D1 and contributes to the regulation of CCND1 gene expression in both myogenic and non-muscle, transformed cells. We demonstrate that miR-206, either exogenous or endogenous, reduces cyclin D1 levels and proliferation rate in C2C12 cells without promoting differentiation, and that miR-206 knockdown in terminally differentiated C2C12 cells leads to cyclin D1 accumulation in myotubes, indicating that miR-206 might be involved in the maintenance of the post-mitotic state. Targeting of cyclin D1 might also account, at least in part, for the tumor-suppressor activity suggested for miR-206 in previous studies. Accordingly, the analysis of neoplastic and matched normal lung tissues reveals that miR-206 downregulation in lung tumors correlates, in most cases, with higher cyclin D1 levels. Moreover, gain-of-function experiments with cancer-derived cell lines and with in vitro transformed cells indicate that miR-206-mediated cyclin D1 repression is directly coupled to growth inhibition. Altogether, our data highlight a novel activity for miR-206 in skeletal muscle differentiation and identify cyclin D1 as a major target that further strengthens the tumor suppressor function proposed for miR-206.


Oncogene | 1998

Role of Gas1 down-regulation in mitogenic stimulation of quiescent NIH3T3 cells by v-Src

Milena Grossi; S Anna La Rocca; Gloria Pierluigi; Serena Vannucchi; Elisabetta Ruaro; Claudio Schneider; Franco Tatò

Quiescent mammalian fibroblasts can be induced to re-enter the cell cycle by growth factors and oncoproteins. We studied the pathway(s) through which v-Src, the oncogenic tyrosine kinase encoded by the v-src oncogene of Rous sarcoma virus, forces serum-starved NIH3T3 cells to enter S-phase. To this purpose, we isolated and characterized a polyclonal population of NIH3T3 cells transformed by the MR31 retroviral vector, encoding G418 resistance and the v-src temperature-sensitive allele from the mutant ts LA31 PR-A. NIH(MR31) cells displayed a temperature-conditional transformed phenotype and could be made quiescent by serum deprivation at the restrictive temperature. Serum stimulation or thermolabile v-Src reactivation induced entry into S-phase to a comparable extent, although with different kinetics. The data suggest that v-Src mitogenic activity involves early activation of the Erk1/Erk2 MAP kinases with very little tyrosine phosphorylation of the Shc adaptor proteins at least during the early stages of v-Src reactivation and that v-Src-induced S-phase entry was strongly inhibited by drugs affecting MEK or PI 3-kinase. Our results also suggest that down-regulation of gas1 gene expression plays an important role in regulating the efficiency of entry into S-phase triggered by reactivated v-Src and that Gas1 down-regulation does not require PI 3-kinase dependent signals.


PLOS ONE | 2014

Molecular and Functional Profiling of the Polyamine Content in Enteroinvasive E. coli : Looking into the Gap between Commensal E. coli and Harmful Shigella

Rosaria Campilongo; Maria Letizia Di Martino; Lucia Marcocci; Paola Pietrangeli; Adriano Leuzzi; Milena Grossi; Mariassunta Casalino; Mauro Nicoletti; Gioacchino Micheli; Bianca Colonna; Gianni Prosseda

Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery, has undergone drastic genomic rearrangements affecting the polyamine profile. A pathoadaptation process involving the speG gene and the cad operon has led to spermidine accumulation and loss of cadaverine. While a higher spermidine content promotes the survival of Shigella within infected macrophages, the lack of cadaverine boosts the pathogenic potential of the bacterium in host tissues. Enteroinvasive E. coli (EIEC) display the same pathogenicity process as Shigella, but have a higher infectious dose and a higher metabolic activity. Pathoadaption events affecting the cad locus have occurred also in EIEC, silencing cadaverine production. Since EIEC are commonly regarded as evolutionary intermediates between E. coli and Shigella, we investigated on their polyamine profile in order to better understand which changes have occurred along the path to pathogenicity. By functional and molecular analyses carried out in EIEC strains belonging to different serotypes, we show that speG has been silenced in one strain only, favouring resistance to oxidative stress conditions and survival within macrophages. At the same time, we observe that the content of spermidine and putrescine, a relevant intermediate in the synthesis of spermidine, is higher in all strains as compared to E. coli. This may represent an evolutionary response to the lack of cadaverine. Indeed, restoring cadaverine synthesis decreases the expression of the speC gene, whose product affects putrescine production. In the light of these results, we discuss the possible impact of pathoadaptation events on the evolutionary emergence of a polyamine profile favouring to the pathogenic lifestyle of Shigella and EIEC.


Oncogene | 1997

Transcriptional down-regulation of myogenin expression is associated with v-ras-induced block of differentiation in unestablished quail muscle cells.

Simona Russo; Franco Tatò; Milena Grossi

Unestablished quail myoblasts were infected with a retroviral vector encoding the oncogenic form of H-Ras in order to investigate the mechanism by which this oncoprotein interferes with terminal differentiation. Primary quail myogenic cells exhibit the simultaneous expression of the muscle regulatory genes myf-5, MyoD and myogenin in proliferative conditions. v-ras-transformed myoblasts displayed an altered growth control and lost the competence for terminal differentiation. When expression of myogenic regulatory genes was analysed, it was immediately apparent that the difference between normal and v-ras-transformed cells was limited to a severely decreased level of myogenin expression. Forced expression of exogenous myogenin in v-ras-transformed quail myoblasts led to a striking recovery of the competence for terminal differentiation. The present data show that: (i) repression of myogenin expression is linked to the differentiation defective phenotype of quail myoblasts transformed by v-ras as well as other retroviral oncogenes; (ii) correction of the differentiation-defective phenotype of v-ras-transformed myoblasts by exogenous myogenin entailed reactivation of endogenous myogenin and of the E-box-dependent transactivating function. These results strongly indicate that myogenin expression plays a central role in regulating the transition into the terminally differentiated state and that its transcriptional down-regulation represents a nodal step in v-ras-induced block of differentiation.


International Journal of Medical Microbiology | 2015

The Shigella flexneri OspB effector: an early immunomodulator

Cecilia Ambrosi; Monica Pompili; Daniela Scribano; Dolores Limongi; Andrea Petrucca; Sonia Cannavacciuolo; Serena Schippa; Carlo Zagaglia; Milena Grossi; Mauro Nicoletti

Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection.


PLOS ONE | 2015

Multifactor Regulation of the MdtJI Polyamine Transporter in Shigella

Adriano Leuzzi; Maria Letizia Di Martino; Rosaria Campilongo; Maurizio Falconi; Marialuisa Barbagallo; Lucia Marcocci; Paola Pietrangeli; Mariassunta Casalino; Milena Grossi; Gioacchino Micheli; Bianca Colonna; Gianni Prosseda

The polyamine profile of Shigella, the etiological agent of bacillary dysentery in humans, differs markedly from that of E. coli, its innocuous commensal ancestor. Pathoadaptive mutations such as the loss of cadaverine and the increase of spermidine favour the full expression of the virulent phenotype of Shigella. Spermidine levels affect the expression of the MdtJI complex, a recently identified efflux pump belonging to the small multi-drug resistance family of transporters. In the present study, we have addressed the regulation of the mdtJI operon in Shigella by asking which factors influence its expression as compared to E. coli. In particular, after identifying the mdtJI promoter by primer extension analysis, in vivo transcription assays and gel-retardation experiments were carried out to get insight on the silencing of mdtJI in E. coli. The results indicate that H-NS, a major nucleoid protein, plays a key role in repressing the mdtJI operon by direct binding to the regulatory region. In the Shigella background mdtJI expression is increased by the high levels of spermidine typically found in this microorganism and by VirF, the plasmid-encoded regulator of the Shigella virulence regulatory cascade. We also show that the expression of mdtJI is stimulated by bile components. Functional analyses reveal that MdtJI is able to promote the excretion of putrescine, the spermidine precursor. This leads us to consider the MdtJI complex as a possible safety valve allowing Shigella to maintain spermidine to a level optimally suited to survival within infected macrophages and, at the same time, prevent toxicity due to spermidine over-accumulation.

Collaboration


Dive into the Milena Grossi's collaboration.

Top Co-Authors

Avatar

Franco Tatò

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gianni Prosseda

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Adriano Leuzzi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Pompili

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gioacchino Micheli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge