Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milena Marsoni is active.

Publication


Featured researches published by Milena Marsoni.


Plant Cell Reports | 2008

Proteomic analysis of somatic embryogenesis in Vitis vinifera

Milena Marsoni; Marcella Bracale; Luca Espen; Bhakti Prinsi; Alfredo Simone Negri; Candida Vannini

Two dimensional gel electrophoresis coupled to mass spectrometry has been used to study the somatic embryogenesis in Vitis vinifera, by comparing embryogenic and non embryogenic calluses of the Thompson seedless cv. More than 1,000 spots were reproducibly resolved in colloidal Coomassie brilliant blue stained gels over a pI nonlinear range of 3–10 in the first dimension and using homogeneous 12.5% polyacrylamide gels in the second dimension. The expression pattern of 35 spots differed significantly between the two samples. These spots were processed by mass spectrometry analysis and the protein identity was assigned by using both the non-redundant protein and EST databases. Several responsive proteins, some already known to be involved in the somatic embryogenesis process while others, for the first time put into relation with this process, have been described. Moreover, they have been subdivided in functional categories, and their putative role is discussed in terms of their relevance in the somatic embryogenesis process.


PLOS ONE | 2013

Morphological and Proteomic Responses of Eruca sativa Exposed to Silver Nanoparticles or Silver Nitrate

Candida Vannini; Guido Domingo; Elisabetta Onelli; Bhakti Prinsi; Milena Marsoni; Luca Espen; Marcella Bracale

Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L1 of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions.


Journal of Plant Physiology | 2014

Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings

Candida Vannini; Guido Domingo; Elisabetta Onelli; Fabrizio De Mattia; Ilaria Bruni; Milena Marsoni; Marcella Bracale

We investigated the effects of 1 and 10 mg L(-1) AgNPs on germinating Triticum aestivum L. seedlings. The exposure to 10 mg L(-1) AgNPs adversely affected the seedling growth and induced morphological modifications in root tip cells. TEM analysis suggests that the observed effects were due primarily to the release of Ag ions from AgNPs. To gain an increased understanding of the molecular response to AgNP exposure, we analyzed the genomic and proteomic changes induced by AgNPs in wheat seedlings. At the DNA level, we applied the AFLP technique and we found that both treatments did not induce any significant DNA polymorphisms. 2DE profiling of roots and shoots treated with 10 mg L(-1) of AgNPs revealed an altered expression of several proteins mainly involved in primary metabolism and cell defense.


Aquatic Toxicology | 2011

Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata

Candida Vannini; Guido Domingo; Milena Marsoni; Fabrizio De Mattia; Massimo Labra; Sara Castiglioni; Marcella Bracale

Pharmaceutically-active compounds are regularly and widely released into the aquatic environment in an unaltered form or as metabolites. So far, little is known about their potential detrimental effects on algae populations which can ultimately impact nutrient cycling and oxygen balance. For our analysis, the common microalga Pseudokirchneriella subcapitata (P. subcapitata) was exposed to a mixture of 13 drugs found in Italian wastewaters and rivers. Traces of pharmaceuticals investigated were detected in treated algal cells, except for cyclophosphamide and ranitidine, indicating that these algae are able to absorb pharmaceutical pollutants from the environment. The effects of the treatment were investigated by Amplified Fragment Length Polymorphism (AFLP) assessment of DNA damage and 2-DE proteomic analysis. While no genotoxic effect was detected, proteomic analysis showed that algae are sensitive to the presence of drugs and that, in particular, the chloroplast is affected.


Ecotoxicology and Environmental Safety | 2014

Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants

Milena Marsoni; Fabrizio De Mattia; Massimo Labra; Antonella Bruno; Marcella Bracale; Candida Vannini

Pharmaceutically active compounds (PACs) are continuously dispersed into the environment due to human and veterinary use, giving rise to their potential accumulation in edible plants. In this study, Eruca sativa L. and Zea mays L. were selected to determine the potential uptake and accumulation of eight different PACs (Salbutamol, Atenolol, Lincomycin, Cyclophosphamide, Carbamazepine, Bezafibrate, Ofloxacin and Ranitidine) designed for human use. To mimic environmental conditions, the plants were grown in pots and irrigated with water spiked with a mixture of PACs at concentrations found in Italian wastewaters and rivers. Moreover, 10× and 100× concentrations of these pharmaceuticals were also tested. The presence of the pharmaceuticals was tested in the edible parts of the plants, namely leaves for E. sativa and grains for Z. mays. Quantification was performed by liquid chromatography mass spectroscopy (LC/MS/MS). In the grains of 100× treated Z. mays, only atenolol, lincomycin and carbamazepine were above the limit of detection (LOD). At the same concentration in E. sativa plants the uptake of all PACs was >LOD. Lincomycin and oflaxacin were above the limit of quantitation in all conditions tested in E. sativa. The results suggest that uptake of some pharmaceuticals from the soil may indeed be a potential transport route to plants and that these environmental pollutants can reach different edible parts of the selected crops. Measurements of the concentrations of these pharmaceuticals in plant materials were used to model potential adult human exposure to these compounds. The results indicate that under the current experimental conditions, crops exposed to the selected pharmaceutical mixture would not have any negative effects on human health. Moreover, no significant differences in the growth of E. sativa or Z. mays plants irrigated with PAC-spiked vs. non-spiked water were observed.


Plant Cell and Environment | 2010

Exploring the soluble proteome of Tobacco Bright Yellow-2 cells at the switch towards different cell fates in response to heat shocks.

Milena Marsoni; Carlo Cantara; Maria Concetta de Pinto; Cosimo Gadaleta; Laura De Gara; Marcella Bracale; Candida Vannini

Tobacco (Nicotiana tabacum) Bright Yellow-2 (TBY-2) cells undergo different fates when exposed for 10 minutes to heat stresses of different severity. A 35 degrees C treatment causes a homeostatic response (HRE) allowing cells to cope with the stress; 55 degrees C triggers processes leading to programmed cell death (PCD), which is complete after 72 h. We have used a proteomic approach to gain insight into the molecular mechanisms defining the fate of TBY-2 cells induced by these two heat stresses. Tandem mass spectrometry (MS/MS) and two-dimensional electrophoresis (2-DE) analysis revealed little overlap of differentially-accumulated proteins: the different severities of heat treatment induced the modulation of specific proteins, some of which are responsible for different cell fates. When the imposed heat shock is beyond a certain threshold, the overall reduced metabolism may be the result of a series of events involving gene expression and oxidative damage that would lead to PCD. Our data suggest that the down-accumulation of several proteins involved in cellular redox homeostasis could provide, until now, an unappreciated contribution to understanding how many partners are involved in promoting the redox impairment leading to PCD. Moreover post-translational modifications seem to play important regulatory roles in the adaptation of TBY-2 cells to different intensities of heat stress.


Journal of Experimental Botany | 2012

The soluble proteome of tobacco Bright Yellow-2 cells undergoing H2O2-induced programmed cell death

Candida Vannini; Milena Marsoni; Carlo Cantara; Maria Concetta de Pinto; Vittoria Locato; Laura De Gara; Marcella Bracale

Plant programmed cell death (PCD) is a genetically controlled process that plays an important role in development and stress responses. Reactive oxygen species (ROS) are key inducers of PCD. The addition of 50 mM H2O2 to tobacco Bright Yellow-2 (TBY-2) cell cultures induces PCD. A comparative proteomic analysis of TBY-2 cells treated with 50 mM H2O2 for 30 min and 3 h was performed. The results showed early down-regulation of several elements in the cellular redox hub and inhibition of the protein repair–degradation system. The expression patterns of proteins involved in the homeostatic response, in particular those associated with metabolism, were consistently altered. The changes in abundance of several cytoskeleton proteins confirmed the active role of the cytoskeleton in PCD signalling. Cells undergoing H2O2-induced PCD fail to cope with oxidative stress. The antioxidant defence system and the anti-PCD signalling cascades are inhibited. This promotes a genetically programmed cell suicide pathway. Fifteen differentially expressed proteins showed an expression pattern similar to that previously observed in TBY-2 cells undergoing heat shock-induced PCD. The possibility that these proteins are part of a core complex required for PCD induction is discussed.


Chemosphere | 2009

Proteomic analysis of chromate-induced modifications in Pseudokirchneriella subcapitata.

Candida Vannini; Milena Marsoni; Guido Domingo; Fabiana Antognoni; Stefania Biondi; Marcella Bracale

In this work, we have analyzed the changes in the protein expression profile elicited by chromium (Cr) exposure in the freshwater green alga Pseudokirchneriella subcapitata, a well known bio-indicator of water pollution. We tested two experimental conditions, namely 0.2 and 1ppm of potassium dichromate; this concentration range includes the environmentally-relevant concentrations. Results show that neither concentration of potassium dichromate tested inhibited algal growth. However, the proteomic approach allowed the identification of relevant modifications in protein expression. In fact, among 800 protein spots detected by two-dimensional electrophoresis, 16 Cr-regulated proteins, including predicted and novel ones, were identified using tandem mass spectromic protein analysis. The results demonstrate a Cr-specific action in altering several photosynthetic proteins, such as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), RuBisCO activase, Light Harvesting Chla/b protein complex, and stress related Chla/b binding protein1. Although Cr toxicity with respect to photosynthesis has been already documented, here we have identified, for the first time, the target proteins of this toxicity. Cr also induced a modulation of some proteins involved in the metabolism of the amino acids glutamine, arginine and methionine. These data are supported by changes in cellular polyamine (PA) accumulation. Present findings provide new insight into the molecular mechanisms underlying Cr toxicity in P. subcapitata.


Plant Biosystems | 2008

2-DE polypeptide mapping of Posidonia oceanica leaves, a molecular tool for marine environment studies

Antonia Spadafora; Dina Filadoro; Silvia Mazzuca; Marcella Bracale; Milena Marsoni; Monica Cardilio; A. M. Innocenti

Abstract The aim of this research is to provide a molecular tool based on polypeptide mapping to investigate the flowering marine plant Posidonia oceanica. This plant is very vulnerable to contaminants; thus it is considered a valuable bio-indicator of water quality in bio-monitoring of coastal environments. Posidonia oceanica was found to be recalcitrant to the common protein extraction methods. In the present work, three different extraction procedures were compared to obtain high yield and quality protein extracts suitable for mono-dimensional and bi-dimensional electrophoresis (1-DE and 2-DE). Proteins were extracted from juvenile, intermediate and adult leaves in order to assess the influence of tissue differentiation on protein yield. The highest protein yield was obtained with 20% trichloroacetic acid (TCA) precipitation of proteins. The best extraction efficiency was found in juvenile leaves as compared with intermediate and adult ones. However, as a large amount of juvenile leaves is required for obtaining sufficiently large protein samples, these were considered not suitable for the electrophoretic analysis. Extensive sampling could introduce further damage in the meadows under study. High quality 2-DE polypeptide mappings were obtained only from intermediate and adult leaves; the good reproducibility of protein patterns indicates that this approach could be used to explore changes in protein expression of P. oceanica in response to altered environmental conditions.


Physiologia Plantarum | 2007

The rice Mybleu transcription factor increases tolerance to oxygen deprivation in Arabidopsis plants

Monica Mattana; Candida Vannini; Luca Espen; Marcella Bracale; Annamaria Genga; Milena Marsoni; Marcello Iriti; Veronica Bonazza; Francesco Romagnoli; Elena Baldoni; Immacolata Coraggio; Franca Locatelli

Mybleu is a natural incomplete transcription factor of rice (Oryza sativa), consisting of a partial Myb repeat followed by a short leucine zipper. We previously showed its localization to the apical region of rice roots and coleoptiles. Specifically, in coleoptiles, Mybleu is expressed under both aerobic and anaerobic conditions, whereas in roots, it is expressed only under aerobic conditions. Mybleu is able to dimerize with canonical leucine zippers and to activate transcription selectively. To investigate Mybleu function in vivo, we transformed Arabidopsis thaliana and evaluated several morphological, physiological and biochemical parameters. In agreement with a hypothesized role of Mybleu in cell elongation in the differentiation zone, we found that the constitutive expression of this transcription factor in Arabidopsis induced elongation in the primary roots and in the internodal region of the floral stem; we also observed a modification of the root apex morphology in transformed lines. Based on the high expression of Mybleu in anaerobic rice coleoptiles, we studied the role of this transcription factor in transgenic plants grown under low-oxygen conditions. We found that overexpression of this transcription factor increased tolerance to oxygen deficit. In transgenic plants, this effect may depend both on the maintenance of a higher metabolism during stress and on the higher expression levels of certain genes involved in the anaerobic response.

Collaboration


Dive into the Milena Marsoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Labra

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge