Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milena Salerno is active.

Publication


Featured researches published by Milena Salerno.


European Journal of Pharmacology | 2000

Inhibition of the P-glycoprotein- and multidrug resistance protein-mediated efflux of anthracyclines and calceinacetoxymethyl ester by PAK-104P

Carole Marbeuf-Gueye; Milena Salerno; Patricia Quidu; Arlette Garnier-Suillerot

Multidrug resistance phenotype in mammalian cells is often correlated with overexpression of P-glycoprotein or Multidrug Resistance-Associated protein (MRP(1)). Both proteins are energy-dependent drug efflux pumps that efficiently reduce the intracellular accumulation and hence the cytotoxicity of many natural cytotoxins. Overexpression of these transporters by tumor cells is thought to be a significant factor in both intrinsic and acquired resistance to anticancer drugs. Consequently a great deal of interest is focused on identifying chemical agents that can either antagonise drug transport by these proteins or that can inhibit the proliferation of tumors cells despite the expression of these transporters. P-glycoprotein-mediated multidrug resistance is reversed by a variety of compounds, but surprisingly, few agents reverse the MRP(1)-mediated multidrug resistance. However, it has recently been shown that 2-[4-(diphenylmethyl)-1-piperazinyl]ethyl-5-(trans-4,6-dimethyl-1, 3, 2-dioxaphosphorinan-2-yl)-2, 6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylate P oxide (PAK-104P) was able to inhibit the P-glycoprotein and MRP(1)-mediated efflux of several compounds. Understanding of the interactions between transporters and multidrug resistance reversing agents is important in the design of more effective multidrug resistance modulators. We now examined the effect of PAK-104P on Pgp-and MRP1-mediated efflux of three anthracyclines, daunorubicin, pirarubicin, hydroxydoxorubicin and of calcein acetoxymethyl ester and calcein. Our data show that PAK-104P non-competitively inhibits the P-glycoprotein-mediated efflux of anthracycline derivatives and calcein acetoxymethyl ester with an inhibitory constant K(I)=0. 25+/-0.05 microM. PAK-104P also non-competitively inhibits the MRP(1)-mediated efflux of daunorubicin, pirarubicin, hydroxyrubicin, calcein acetoxymethyl ester and calcein. However, surprisingly, in this case the K(I) values obtained were very different ranging from 0.06 for hydroxyrubicin to 10 microM for calcein. These data strongly suggested the existence of two different mechanisms for the inhibition by PAK-104P of the MRP(1)-mediated efflux of molecules: a first mechanism, involving a low-affinity site for PAK-104P, and which would concern molecules such as calcein, cysteinyl leukotriene LCT(4) etc. whose efflux do not depend on glutathione. A second mechanism involving a high-affinity site for PAK-104P and which would concern molecules such as anthracyclines, calcein acetoxymethyl ester whose efflux depends on the presence of glutathione.


Current Medicinal Chemistry | 2001

Analysis of drug transport kinetics in multidrug-resistant cells : Implications for drug action

Arlette Garnier-Suillerot; Carole Marbeuf-Gueye; Milena Salerno; Chatchanok Loetchutinat; Izabela Fokt; Marta Krawczyk; Teresa Kowalczyk; Waldemar Priebe

Multidrug resistance (MDR) in model systems is known to be conferred by two different integral proteins--the 170-kDa P-glycoprotein (P-gp) and the 190-kDa multidrug resistance-associated protein (MRP1)--that pump drugs out of MDR cells. The intracellular level of a drug, which influences the drugs cytotoxic effect, is a function of the amount of drug transported inside the cell (influx) and the amount of drug expelled from the cell (efflux). One possible pharmacological approach to overcoming drug resistance is the use of specific inhibitors that enhance the cytotoxicity of known antineoplastic agents. Many compounds have been proven to be very efficient in inhibiting P-gp activity, but only some of them can inhibit MRP1. However, the clinical results obtained so far by this approach have been rather disappointing. The other likely approach is based on the design and synthesis of new non-cross-resistant drugs whose physicochemical properties favor the uptake of such drug by resistant cells. Our recent studies have shown that whereas the P-gp- and MRP1-mediated efflux of different anthracycline-based drugs may not differ considerably, their kinetics of uptake do. Thus, the high uptake of drug by cells may lead to concentrations at the cellular target site high enough to achieve the needed cytotoxicity against MDR cells. Therefore, increased drug lipophilicity might be one factor in improving drug cytotoxicity in MDR cells. In vitro studies have shown that idarubicin, an analogue of daunorub cin, is more effective than daunorubicin and doxorubicin against MDR tumor cell lines and that this increased effectiveness is related in part to the increased lipophilicity of idarubicin. Other studies have also confirmed the strong impact of lipophilicity on the uptake and retention of anthracyclines in MDR cells.


Chemico-Biological Interactions | 2003

New findings in the study on the intercalation of bisdaunorubicin and its monomeric analogues with naked and nucleus DNA.

Hayet Tayeb-Bel Haj; Milena Salerno; Waldemar Priebe; Henryk Kozlowski; Arlette Garnier-Suillerot

DNA is a target molecule for anthracycline anticancer drugs. We have used new anthracycline derivatives, bisdaunorubicin (WP631) and its monomeric analogues (WP700 serie), and look if there was a relation between the drug binding affinity to naked DNA and to cell nucleus in the cell with its cytotoxicity. Circular dichroism (CD) and fluorescence were used to follow the interaction of anthracycline derivatives with naked DNA and cell nuclei. WP631 interacts with DNA at two distinct stoichiometries, 6:1 and 3:1 base pair (bp)/WP631 molecule (3:1 and 1.5:1 per anthracycline rings). Monomeric daunorubicin (DNR) with its amino sugar N-bound to amino- and nitro-substituted benzyl moiety, representing p-xylenyl linker present in WP631 bisintercalator, is much more binding to DNA than DNR or WP631. These findings are supported by the study of drug binding by nuclei of K562 cells. Around 70% of WP700 intercalate to nucleus DNA in the steady-state, while only 45% of DNR intercalate DNA in the cell. The binding of WP631 by K562 cells is even less effective ( approximately 20%). WP 700 compounds, which are very similar to each other in their binding to DNA, self-association and cell accumulation, differ very distinctly in their cytotoxicity power. The most effective compounds are amino-benzyl derivatives of WP 700 series. The nitro-benzyl compounds have very low toxicity, even if they bind to DNA with similar power with that of the amino derivatives. The comparison of the all data clearly indicates no relation between cytotoxicity of the drug and its ability to intercalate DNA.


European Journal of Pharmacology | 2001

Kinetics of glutathione and daunorubicin efflux from multidrug resistance protein overexpressing small-cell lung cancer cells

Milena Salerno; Arlette Garnier-Suillerot

The present study examined how the multidrug resistance protein (MRP1), which is an ATP-dependent anionic conjugate transporter, also mediates the transport of reduced glutathione (GSH) and the co-transport of the cationic drug, daunorubicin, with GSH in living GLC4/Adr cells. To obtain information on the affinity of GSH for the multidrug resistance protein in GLC4/Adr cells, we investigated the GSH concentration dependence of the ATP-dependent GSH efflux. The intracellular GSH concentration was modulated by preincubation of the cells with 25 microM buthionine sulfoximine, an inhibitor of GSH synthetase, for 0-24 h. The transport of GSH was related to the intracellular GSH concentration up to approximately 5 mM and then plateaued. Fitting of the obtained data according to the Michaelis-Menten equation revealed a Km of 3.4+/-1.4 mM and a Vmax of 1.5+/-0.2x10(-18) mol/cell/s. The ATP-dependent transport of GSH was inhibited by 3-([[3-(2-[7-chloro-2-quinolinyl]ethenyl)phenyl]-[(3-dimethylamino-3-oxopropyl)-thio]-methyl]thio)propanoic acid (MK571), with 50% inhibition being obtained with 1.4 microM MK571. We investigated the GSH concentration dependence of the MRP1-mediated ATP-dependent transport of daunorubicin under conditions where the transport of daunorubicin became saturated. The daunorubicin transport was related to the intracellular GSH concentration up to approximately 5 mM and then plateaued. We were therefore in the situation where GSH acted as an activator: its presence was necessary for the binding and transport of daunorubicin by MRP1. However, GSH was also transported by the multidrug resistance protein. The concentration of GSH that gave half the maximal rate of daunorubicin efflux was 2.1+/-0.8 mM, very similar to the Km value obtained for GSH. In conclusion, the rate of daunorubicin efflux, under conditions where the transport of daunorubicin became saturated, and the rate of GSH efflux determined at any intracellular concentration of GSH were very similar, yielding a 1:1 stoichiometry with respect to GSH and daunorubicin transport. These results support a model in which daunorubicin is co-transported with GSH.


Journal of Bioenergetics and Biomembranes | 2002

The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation.

Milena Salerno; Maria Petroutsa; Arlette Garnier-Suillerot

Arsenic trioxide is an effective treatment for acute promyelocytic leukemia, but resistance to metalloïd salts is found in humans. Using atomic absorption spectroscopy, we have measured the rate of uptake of arsenic trioxide and of antimony tartrate in GLC4 and GLC4/ADR cells overexpressing MRP1 and the rate of their MRP1-mediated effluxes as a function of the intracellular GSH concentration. In sensitive cells, after 1 h, a pseudosteady state is reached where intra- and extracellular concentrations of metalloid are the same. This precludes the formation, at short term, of complexes between arsenic or antimony with GSH. In resistant cells reduced intracellular accumulation of arsenic (or antimony), reflecting an increased rate of arsenic (or antimony) efflux from the cells, is observed. No efflux of the metalloid is observed in GSH depleted cells. The two metalloïds and GSH are pumped out by MRP1 with the same efficiency. Moreover for the three compounds 50% of the efflux is inhibited by 2 μM MK571. This led us to suggest that As- and Sb-containing species could be cotransported with GSH.


ACS Medicinal Chemistry Letters | 2013

PiB-Conjugated, Metal-Based Imaging Probes: Multimodal Approaches for the Visualization of β-Amyloid Plaques.

André F. Martins; Jean-François Morfin; Anna Kubíčková; Vojtěch Kubíček; Frédéric Buron; Franck Suzenet; Milena Salerno; Adina N. Lazar; Charles Duyckaerts; Nicolas Arlicot; Denis Guilloteau; Carlos F. G. C. Geraldes; Éva Tóth

In an effort toward the visualization of β-amyloid plaques by in vivo imaging techniques, we have conjugated an optimized derivative of the Pittsburgh compound B (PiB), a well-established marker of Aβ plaques, to DO3A-monoamide that is capable of forming stable, noncharged complexes with different trivalent metal ions including Gd(3+) for MRI and (111)In(3+) for SPECT applications. Proton relaxivity measurements evidenced binding of Gd(DO3A-PiB) to the amyloid peptide Aβ1-40 and to human serum albumin, resulting in a two- and four-fold relaxivity increase, respectively. Ex vivo immunohistochemical studies showed that the DO3A-PiB complexes selectively target Aβ plaques on Alzheimers disease human brain tissue. Ex vivo biodistribution data obtained for the (111)In-analogue pointed to a moderate blood-brain barrier (BBB) penetration in adult male Swiss mice (without amyloid deposits) with 0.36% ID/g in the cortex at 2 min postinjection.


Journal of Medicinal Chemistry | 2009

N,N-bis(cyclohexanol)amine aryl esters: a new class of highly potent transporter-dependent multidrug resistance inhibitors.

Cecilia Martelli; Daniela Alderighi; Marcella Coronnello; Silvia Dei; Maria Frosini; Bénédicte Le Bozec; Dina Manetti; Annalisa Neri; Maria Novella Romanelli; Milena Salerno; Serena Scapecchi; Enrico Mini; Giampietro Sgaragli; Elisabetta Teodori

A new series of Pgp-dependent MDR inhibitors having a N,N-bis(cyclohexanol)amine scaffold was designed on the basis of the frozen analogue approach. The scaffold chosen gives origin to different geometrical isomers. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells in the pirarubicin uptake assay. The most interesting compounds (isomers of 3) were studied further evaluating their action on the ATPase activity present in rat small intestine membrane vesicles and doxorubicin cytotoxicity potentiation on K562 cells. The latter assay was performed also on the isomers of 4. The four isomers of each set present different behavior in each of these tests. Compound 3d shows the most promising properties as it was able to completely reverse Pgp-dependent pirarubicin extrusion at low nanomolar concentration, inhibited ATPase activity at 5 x 10(-9) and increased the cytotoxicity of doxorubicin with a reversal fold (RF) of 36.4 at 3 microM concentration.


Nanotechnology | 2015

Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells.

Sadequa Sultana; Nadia Djaker; Sanda Boca-Farcau; Milena Salerno; Nathalie Charnaux; Simion Astilean; Hanna Hlawaty; Marc Lamy de la Chapelle

In this paper, we propose a multi-parametric in vitro study of the cytotoxicity of gold nanoparticles (GNPs) on human endothelial cell (HUVEC). The cytotoxicity is evaluated by incubating cells with six different GNP types which have two different morphologies: spherical and flower-shaped, two sizes (∼15 and ∼50 nm diameter) and two surface chemistries (as prepared form and PEGylated form). Our results showed that by increasing the concentration of GNPs the cell viability decreases with a toxic concentration threshold of 10 pM for spherical GNPs and of 1 pM for flower-shaped GNPs. Dark field images, flow cytometry and spreading test revealed that flower-shaped GNPs have more deleterious effects on the cell mechanisms than spherical GNPs. We demonstrated that the main parameter in the evaluation of the GNPs toxicity is the GNPs roughness and that this effect is independent on the surface chemistry. We assume that this behavior is highly related to the efficiency of the GNPs internalization within the cells and that this effect is enhanced due to the specific geometry of the flower-shaped GNPs.


FEBS Journal | 2007

Perturbation of membrane microdomains in GLC4 multidrug-resistant lung cancer cells − modification of ABCC1 (MRP1) localization and functionality

Carole Marbeuf-Gueye; Vérène Stierlé; Paiwan Sudwan; Milena Salerno; Arlette Garnier-Suillerot

The multidrug resistance‐associated protein transporter ABCC1 (MRP1) is an integral plasma membrane protein involved in the multidrug resistance phenotype. It actively expels a number of cytotoxic molecules from cells. To gain insight into the modulation of the functional properties of this integral membrane protein by cholesterol, a main component of the lipid bilayer, we used multidrug‐resistant GLC4/ADR cells, which overexpress MRP1. Upon altering the plasma membrane cholesterol content of these cells, membrane localization and the activity of MRP1 were analyzed. A detergent‐free methodology was used to separate ‘light’ and ‘heavy’ plasma membrane fractions. Our data show that MRP1 was exclusively found in ‘light’ fractions known as L0 phase membrane microdomains, together with ∼ 23% of gangliosides GM1 and 40% of caveolin‐1. Depletion of the membrane cholesterol level to 40% by treatment with the cholesterol‐chelating agent methyl‐β‐cyclodextrin did not modify MRP1 activity, as evidenced either by the rate of efflux of pirarubicin or that of glutathione. Further cholesterol depletion below 40% yielded both a partial shift of MRP1 to the high‐density fraction and a decrease of its functionality. Taken together, these data suggest that MRP1 funtionality depends on its localization in cholesterol‐rich membrane microdomains.


Journal of Medicinal Chemistry | 2010

Structure-Activity Relationships Studies in a Series of N,N-Bis(alkanol)amine Aryl Esters as P-Glycoprotein (Pgp) Dependent Multidrug Resistance (MDR) Inhibitors

Cecilia Martelli; Marcella Coronnello; Silvia Dei; Dina Manetti; Francesca Orlandi; Serena Scapecchi; Maria Novella Romanelli; Milena Salerno; Enrico Mini; Elisabetta Teodori

As a continuation of a previous research, a series of N,N-bis(alkanol)amine aryl esters, as Pgp-dependent MDR inhibitors, was designed and synthesized. The aromatic ester portions are suitably modulated, and new aryl rings (Ar(1) and Ar(2)) were combined with trans-3-(3,4,5-trimethoxyphenyl)vinyl, 3,4,5-trimethoxybenzyl and anthracene moieties that were present in the most potent previously studied compounds. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Selected compounds (5, 6, 8, 9, and 21) were further studied, evaluating their action on doxorubicin cytotoxicity potentiation on K562 cells; they significantly enhanced doxorubicin cytotoxicity on K562/DOX cells, confirming the results obtained with pirarubicin. Compound 9 shows the most promising properties as it was able to nearly completely reverse Pgp-dependent pirarubicin extrusion at nanomolar doses and increased the cytotoxicity of doxorubicin with a reversal fold (RF) of 19.1 at 3 microM dose.

Collaboration


Dive into the Milena Salerno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Dei

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Mini

University of Florence

View shared research outputs
Researchain Logo
Decentralizing Knowledge