Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miles W. Carroll is active.

Publication


Featured researches published by Miles W. Carroll.


The Lancet | 2015

Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial

Ana Maria Henao-Restrepo; Ira M. Longini; Matthias Egger; Natalie E Dean; W. John Edmunds; Anton Camacho; Miles W. Carroll; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Stefanie Hossmann; Mandy Kader Kondé; Souleymane Kone; Eeva Kuisma; Myron M. Levine; Sema Mandal; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari; Conall H. Watson; Sakoba Keita; Marie Paule Kieny; John-Arne Røttingen

BACKGROUND A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.


The Lancet | 2017

Efficacy and Effectiveness of an rVSV-Vectored Vaccine in Preventing Ebola Virus Disease: Final Results from the Guinea Ring Vaccination, Open-Label, Cluster-Randomised Trial (Ebola Ça Suffit!)

Ana Maria Henao-Restrepo; Anton Camacho; Ira M. Longini; Conall H. Watson; W. John Edmunds; Matthias Egger; Miles W. Carroll; Natalie E Dean; Ibrahima Dina Diatta; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Pierre-Stéphane Gsell; Stefanie Hossmann; Sara Viksmoen Watle; Mandy Kader Kondé; Sakoba Keita; Souleymane Kone; Eewa Kuisma; Myron M. Levine; Sema Mandal; Thomas Mauget; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari

Summary Background rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. Methods We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6–17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. Findings In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9–100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3–100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. Interpretation The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. Funding WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norways GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).


Journal of Virology | 2000

Comparative Efficacy of Recombinant Modified Vaccinia Virus Ankara Expressing Simian Immunodeficiency Virus (SIV) Gag-Pol and/or Env in Macaques Challenged with Pathogenic SIV

Ilnour Ourmanov; Charles R. Brown; Bernard Moss; Miles W. Carroll; Linda S. Wyatt; Liuobov Pletneva; Simoy Goldstein; David Venzon; Vanessa M. Hirsch

ABSTRACT Prior studies demonstrated that immunization of macaques with simian immunodeficiency virus (SIV) Gag-Pol and Env recombinants of the attenuated poxvirus modified vaccinia virus Ankara (MVA) provided protection from high levels of viremia and AIDS following challenge with a pathogenic strain of SIV (V. M. Hirsch et al., J. Virol. 70:3741–3752, 1996). This MVA-SIV recombinant expressed relatively low levels of the Gag-Pol portion of the vaccine. To optimize protection, second-generation recombinant MVAs that expressed high levels of either Gag-Pol (MVA-gag-pol) or Env (MVA-env), alone or in combination (MVA-gag-pol-env), were generated. A cohort of 24 macaques was immunized with recombinant or nonrecombinant MVA (four groups of six animals) and was challenged with 50 times the dose at which 50% of macaques are infected with uncloned pathogenic SIVsmE660. Although all animals became infected postchallenge, plasma viremia was significantly reduced in animals that received the MVA-SIV recombinant vaccines as compared with animals that received nonrecombinant MVA (P = 0.0011 by repeated-measures analysis of variance). The differences in the degree of virus suppression achieved by the three MVA-SIV vaccines were not significant. Most importantly, the reduction in levels of viremia resulted in a significant increase in median (P < 0.05 by Students t test) and cumulative (P = 0.010 by log rank test) survival. These results suggest that recombinant MVA has considerable potential as a vaccine vector for human AIDS.


Journal of Virology | 2000

Immunization with a Modified Vaccinia Virus Expressing Simian Immunodeficiency Virus (SIV) Gag-Pol Primes for an Anamnestic Gag-Specific Cytotoxic T-Lymphocyte Response and Is Associated with Reduction of Viremia after SIV Challenge

Aruna Seth; Ilnour Ourmanov; Jörn E. Schmitz; Marcelo J. Kuroda; Michelle A. Lifton; Christine E. Nickerson; Linda S. Wyatt; Miles W. Carroll; Bernard Moss; David Venzon; Norman L. Letvin; Vanessa M. Hirsch

ABSTRACT The immunogenicity and protective efficacy of a modified vaccinia virus Ankara (MVA) recombinant expressing the simian immunodeficiency virus (SIV) Gag-Pol proteins (MVA-gag-pol) was explored in rhesus monkeys expressing the major histocompatibility complex (MHC) class I allele, MamuA*01. Macaques received four sequential intramuscular immunizations with the MVA-gag-polrecombinant virus or nonrecombinant MVA as a control. Gag-specific cytotoxic T-lymphocyte (CTL) responses were detected in all MVA-gag-pol-immunized macaques by both functional assays and flow cytometric analyses of CD8+ T cells that bound a specific MHC complex class I-peptide tetramer, with levels peaking after the second immunization. Following challenge with uncloned SIVsmE660, all macaques became infected; however, viral load set points were lower in MVA-gag-pol-immunized macaques than in the MVA-immunized control macaques. MVA-gag-pol-immunized macaques exhibited a rapid and substantial anamnestic CTL response specific for the p11C, C-M Gag epitope. The level at which CTL stabilized after resolution of primary viremia correlated inversely with plasma viral load set point (P = 0.03). Most importantly, the magnitude of reduction in viremia in the vaccinees was predicted by the magnitude of the vaccine-elicited CTL response prior to SIV challenge.


Advances in Experimental Medicine and Biology | 1996

HOST RANGE RESTRICTED, NON-REPLICATING VACCINIA VIRUS VECTORS AS VACCINE CANDIDATES

Bernard Moss; Miles W. Carroll; Linda S. Wyatt; Jack R. Bennink; Vanessa M. Hirsch; Simoy Goldstein; William R. Elkins; Thomas R. Fuerst; Jeffrey D. Lifson; Mike Piatak; Nicholas P. Restifo; Willem W. Overwijk; Ronald S. Chamberlain; Steven A. Rosenberg; Gerd Sutter

Three model systems were used to demonstrate the immunogenicity of highly attenuated and replication-defective recombinant MVA. (1) Intramuscular inoculation of MVA-IN-Fha/np induced humoral and cell-mediated immune responses in mice and protectively immunized them against a lethal respiratory challenge with influenza virus. Intranasal vaccination was also protective, although higher doses were needed. (2) In rhesus macaques, an immunization scheme involving intramuscular injections of MVA-SIVenv/gag/pol greatly reduced the severity of disease caused by an SIV challenge. (3) In a murine cancer model, immunization with MVA-beta gal prevented the establishment of tumor metastases and even prolonged life in animals with established tumors. These results, together with previous data on the safety of MVA in humans, suggest the potential usefulness of recombinant MVA for prophylactic vaccination and therapeutic treatment of infectious diseases and cancer.


Vaccine | 1997

Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a Murine tumor model

Miles W. Carroll; Willem W. Overwijk; Ronald S. Chamberlain; Steven A. Rosenberg; Bernard Moss; Nicholas P. Restifo

Modified vaccinia virus Ankara (MVA), a highly attenuated strain of vaccinia virus (VV) that is unable to replicate in most mammalian cells, was evaluated as an expression vector for a model tumor associated antigen (TAA) and as a potential anti-cancer vaccine. We employed an experimental murine model in which an adenocarcinoma tumor line, CT26.CL25, was stably transfected with a model TAA, beta-galactosidase (beta-gal). Mice injected intramuscularly with a recombinant MVA (rMVA) expressing beta-gal (MVA-LZ), were protected from a lethal intravenous (i.v.) challenge with CT26.CL25. In addition, splenocytes from mice primed with MVA-LZ were therapeutically effective upon adoptive transfer to mice bearing pulmonary metastases of the CT26.CL25 tumor established 3 days earlier. Most importantly, i.v. inoculation with MVA-LZ resulted in significantly prolonged survival of mice bearing three day old pulmonary metastases. This prolonged survival compared favorably to mice treated with a replication competent recombinant VV expressing beta-gal. These findings indicate that rMVA is an efficacious alternative to the more commonly used replication competent VV for the development of new recombinant anti-cancer vaccines.


Clinical Infectious Diseases | 2016

Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days

Boubacar Diallo; Daouda Sissoko; Nicholas J. Loman; Hadja Aïssatou Bah; Hawa Bah; Mary Claire Worrell; Lya Saidou Conde; Ramata Sacko; Samuel Mesfin; Angelo Loua; Jacques Katomba Kalonda; Ngozi A Erondu; Benjamin A. Dahl; Susann Handrick; Ian Goodfellow; Luke W. Meredith; Matt Cotten; Umaru Jah; Raoul Emeric Guetiya Wadoum; Pierre E. Rollin; N'Faly Magassouba; D. Malvy; Xavier Anglaret; Miles W. Carroll; Raymond Bruce Aylward; Mamoudou H. Djingarey; Abdoulaye Diarra; Pierre Formenty; Sakoba Keita; Stephan Günther

We report on an Ebola virus disease (EVD) survivor who showed Ebola virus in seminal fluid 531 days after onset of disease. The persisting virus was sexually transmitted in February 2016, about 470 days after onset of symptoms, and caused a new cluster of EVD in Guinea and Liberia.


Nature | 2017

Virus genomes reveal factors that spread and sustained the Ebola epidemic

Gytis Dudas; Luiz Max Carvalho; Trevor Bedford; Andrew J. Tatem; Guy Baele; Nuno Rodrigues Faria; Daniel J. Park; Jason T. Ladner; Armando Arias; Danny A. Asogun; Filip Bielejec; Sarah Caddy; Matthew Cotten; Jonathan D’ambrozio; Simon Dellicour; Antonino Di Caro; Joseph W. Diclaro; Sophie Duraffour; Michael J. Elmore; Lawrence S. Fakoli; Ousmane Faye; Merle L. Gilbert; Sahr M. Gevao; Stephen K. Gire; Adrianne Gladden-Young; Andreas Gnirke; Augustine Goba; Donald S. Grant; Bart L. Haagmans; Julian A. Hiscox

The 2013–2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic ‘gravity’ model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Vaccine | 2013

Recombinant MVA vaccines: dispelling the myths.

Matthew G. Cottingham; Miles W. Carroll

Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.


Nature Protocols | 2017

Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples

Joshua Quick; Nathan D. Grubaugh; Steven T. Pullan; Ingra M Claro; Andrew D Smith; Karthik Gangavarapu; Glenn Oliveira; Refugio Robles-Sikisaka; Thomas F. Rogers; Nathan Beutler; Dennis R. Burton; Lia Laura Lewis-Ximenez; Jaqueline Goes Jesus; Marta Giovanetti; Sarah C. Hill; Allison Black; Trevor Bedford; Miles W. Carroll; Márcio Roberto Teixeira Nunes; Luiz Carlos Junior Alcantara; Ester C. Sabino; Sally A. Baylis; Nuno Rodrigues Faria; Matthew Loose; Jared T. Simpson; Oliver G. Pybus; Kristian G. Andersen; Nicholas J. Loman

Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1–2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.

Collaboration


Dive into the Miles W. Carroll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Moss

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas P. Restifo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sophie Duraffour

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Rosenberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephan Günther

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge