Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milica Velimirovic is active.

Publication


Featured researches published by Milica Velimirovic.


Journal of Hazardous Materials | 2014

Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.

Milica Velimirovic; Luca Carniato; Queenie Simons; Gerrit Schoups; Piet Seuntjens; Leen Bastiaens

In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate.


Journal of Hazardous Materials | 2013

Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions

Milica Velimirovic; Per-Olof Larsson; Queenie Simons; Leen Bastiaens

A standardized batch test procedure was developed and used to evaluate the reactivity of twelve newly designed microscale zerovalent iron (mZVI) particles and two biogenic iron sulfides towards a mixture of chlorinated aliphatic hydrocarbons (CAHs) and their breakdown products. For comparison, commercially available mZVIs, nanoscale zerovalent irons (nZVIs), iron sulfides (FeS) and granular zerovalent iron were also tested. Reactivity of the particles was based on observed (kobs) and mass normalized (kM) pseudo-first-order degradation rate constants, as well as specific surface area normalized reaction rate constants (kSA). Sorption characteristics of the particles were based on mass balance data. Among the new mZVIs, significant differences in reactivity were observed and the most reactive particles were identified. Based on kM data, nZVI degraded the examined contaminants one to two orders of magnitude faster than the mZVIs. kM values for biogenic iron sulfides were similar to the least reactive mZVIs. On the other hand, comparison of kSA data revealed that the reactivity of some newly designed mZVIs was similar to highly reactive nZVIs, and even up to one order of magnitude higher. kSA values for biogenic iron sulfides were one to two orders of magnitude lower than those reported for reactive mZVIs.


Journal of Contaminant Hydrology | 2014

Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane.

Milica Velimirovic; Tiziana Anna Elisabetta Tosco; Maarten Uyttebroek; Michela Luna; Francesca Gastone; Cjestmir de Boer; Norbert Klaas; H. Sapion; Heinrich Eisenmann; Per-Olof Larsson; Juergen Braun; Rajandrea Sethi; Leen Bastiaens

A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56μm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA.


Environmental Science & Technology | 2015

Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging

Adrián Flores Orozco; Milica Velimirovic; Tiziana Anna Elisabetta Tosco; Andreas Kemna; H. Sapion; Norbert Klaas; Rajandrea Sethi; Leen Bastiaens

The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.


Journal of Hazardous Materials | 2014

Guar gum coupled microscale ZVI for in situ treatment of CAHs: continuous-flow column study.

Milica Velimirovic; Queenie Simons; Leen Bastiaens

A column study was performed under in situ conditions to evaluate to which extend the inactivation of the microscale zerovalent iron (mZVI) by guar gum occurs under continuous flow conditions. Five aquifer containing columns were set up under different conditions. Efficient removal of trichloroethene was observed for the column amended by mZVI. Stabilization of the mZVI with guar gum led to slightly reduced activity. More reduced reactivity was observed in the poisoned column containing guar gum stabilized mZVI. This confirms that soil microorganisms can degrade guar gum and that subsequent removal of the oligosaccharides by the groundwater flow (flushing effect) can reactivate the mZVI. After more than six months of continuous operation the columns were dismantled. DNA-based qPCR analysis revealed that mZVI does not significantly affect the bacterial community, while guar gum stabilized mZVI particles can even induce bacterial growth. Overall, this study suggests that the temporarily decreased mZVI reactivity due to guar gum, has a rather limited impact on the performance of in situ reactive zones. The presence of guar gum slightly reduced the reactivity of iron, but also slowed down the iron corrosion rate which prolongs the life time of reactive zone.


Journal of Contaminant Hydrology | 2015

Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation

Michela Luna; Francesca Gastone; Tiziana Anna Elisabetta Tosco; Rajandrea Sethi; Milica Velimirovic; Johan Gemoets; Rob Muyshondt; H. Sapion; Norbert Klaas; Leen Bastiaens

The paper reports a pilot injection test of microsized zerovalent iron (mZVI) dispersed in a guar gum shear thinning solution. The test was performed in the framework of the EU research project AQUAREHAB in a site in Belgium contaminated by chlorinated aliphatic hydrocarbons (CAHs). The field application was aimed to overcome those critical aspects which hinder mZVI field injection, mainly due to the colloidal instability of ZVI-based suspensions. The iron slurry properties (iron particles size and concentration, polymeric stabilizer type and concentration, slurry viscosity) were designed in the laboratory based on several tests (reactivity tests towards contaminants, sedimentation tests and rheological measurements). The particles were delivered into the aquifer through an injection well specifically designed for controlled-pressure delivery (approximately 10 bars). The well characteristics and the critical pressure of the aquifer (i.e. the injection pressure above which fracturing occurs) were assessed via two innovative injection step rate tests, one performed with water and the other one with guar gum. Based on laboratory and field preliminary tests, a flow regime at the threshold between permeation and preferential flow was selected for mZVI delivery, as a compromise between the desired homogeneous distribution of the mZVI around the injection point (ensured by permeation flow) and the fast and effective injection of the slurry (guaranteed by high discharge rates and injection pressure, resulting in the generation of preferential flow paths). A monitoring setup was designed and installed for the real-time monitoring of relevant parameters during injection, and for a fast determination of the spatial mZVI distribution after injection via non-invasive magnetic susceptibility measurements.


Chemosphere | 2015

Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment

Milica Velimirovic; Queenie Simons; Leen Bastiaens

The release of fine zerovalent iron (ZVI) particles in the environment after being introduced for in-situ treatment of compounds like chlorinated aliphatic hydrocarbons (CAHs) may raise questions toward environmental safety, especially for nanoscale materials. Classical single-species ecotoxicity tests do focus on aerobic conditions and are only relevant for the scenario when ZVI-particles reach surface water. Herein, we present an alternative approach where a CAH-degrading mixed bacterial culture was used as test-organisms relevant for the anaerobic subsurface. The impact of different ZVI particles on the bacterial culture was evaluated mainly by quantifying ATP, a reporter molecule giving a general indication of the microbial activity. These lab-scale batch tests were performed in liquid medium, without protecting and buffering aquifer material, as such representing worst-case scenario. The activity of the bacterial culture was negatively influenced by nanoscale zerovalent iron at doses as low as 0.05 g L(-1). On the other hand, concentrations up to 2 g L(-1) of several different types of microscale zerovalent iron (mZVI) particles stimulated the activity. However, very high doses of 15-30 g L(-1) of mZVI showed an inhibiting effect on the bacterial community. Negative effects of ZVIs were confirmed by H2 accumulation in the batch reactors and the absence of lactate consumption. Observed inhibition also corresponded to a pH increase above 7.5, explicable by ZVI corrosion that was found to be dose-dependent. The obtained results suggest that low doses of mZVIs will not show severe inhibition effects on the microbial community once used for in-situ treatment of CAHs.


Chemosphere | 2013

Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.

Milica Velimirovic; Per-Olof Larsson; Queenie Simons; Leen Bastiaens

Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content.


Environmental Science & Technology | 2017

Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles

Vesna Micić; Doris Schmid; Nathan Bossa; Andreas P. Gondikas; Milica Velimirovic; Frank von der Kammer; Mark R. Wiesner; Thilo Hofmann

The affinity between nanoscale zerovalent iron (nano-ZVI) and mineral surfaces hinders its mobility, and hence its delivery into contaminated aquifers. We have tested the hypothesis that the attachment of poly(acrylic acid)-coated nano-ZVI (PAA-nano-ZVI) to mineral surfaces could be limited by coating such surfaces with sodium (Na) humate prior to PAA-nano-ZVI injection. Na humate was expected to form a coating over favorable sites for PAA-nano-ZVI attachment and hence reduce the affinity of PAA-nano-ZVI for the collector surfaces through electrosteric repulsion between the two interpenetrating charged polymers. Column experiments demonstrated that a low concentration (10 mg/L) Na humate solution in synthetic water significantly improved the mobility of PAA-nano-ZVI within a standard sand medium. This effect was, however, reduced in more heterogeneous natural collector media from contaminated sites, as not an adequate amount of the collector sites favorable for PAA-nano-ZVI attachment within these media appear to have been screened by the Na humate. Na humate did not interact with the surfaces of acid-washed glass beads or standard Ottawa sand, which presented less surface heterogeneity. Important factors influencing the effectiveness of Na humate application in improving PAA-nano-ZVI mobility include the solution chemistry, the Na humate concentration, and the collector properties.


Science of The Total Environment | 2018

Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency

Milica Velimirovic; Mélanie Auffan; Luca Carniato; Vesna Micić Batka; Doris Schmid; Stephan Wagner; Daniel Borschneck; Olivier Proux; Frank von der Kammer; Thilo Hofmann

Milled zerovalent iron (milled ZVI) particles have been recognized as a promising agent for groundwater remediation because of (1) their high reactivity with chlorinated aliphatic hydrocarbons, organochlorine pesticides, organic dyes, and a number of inorganic contaminants, and (2) a possible greater persistance than the more extensively investigated nanoscale zerovalent iron. We have used laboratory-scale batch degradation experiments to investigate the effect that hydrogeochemical conditions have on the corrosion of milled ZVI and on its ability to degrade trichloroethene (TCE). The observed pseudo first-order degradation rate constants indicated that the degradation of TCE by milled ZVI is affected by groundwater chemistry. The apparent corrosion rates of milled ZVI particles were of the same order of magnitude for hydrogeochemical conditions representative for two contaminated field sites (133-140mmolkg-1day-1, indicating a milled ZVI life-time of 128-135days). Sulfate enhances milled ZVI reactivity by removing passivating iron oxides and hydroxides from the Fe0 surface, thus increasing the number of reactive sites available. The organic matter content of 1.69% in the aquifer material tends to suppress the formation of iron corrosion precipitates. Results from scanning electron microscopy, X-ray diffraction, and iron K-edge X-ray adsorption spectroscopy suggest that the corrosion mechanisms involve the partial dissolution of particles followed by the formation and surface precipitation of magnetite and/or maghemite. Numerical corrosion modeling revealed that fitting iron corrosion rates and hydrogen inhibitory terms to hydrogen and pH measurements in batch reactors can reduce the life-time of milled ZVI particles by a factor of 1.2 to 1.7.

Collaboration


Dive into the Milica Velimirovic's collaboration.

Top Co-Authors

Avatar

Leen Bastiaens

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Queenie Simons

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maarten Uyttebroek

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Carniato

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge