Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Millard H. Lambert is active.

Publication


Featured researches published by Millard H. Lambert.


Nature | 1998

Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma.

Robert T. Nolte; Wisely Gb; Westin S; J.E Cobb; Millard H. Lambert; Riki Kurokawa; Michael G. Rosenfeld; Timothy M. Willson; Christopher K. Glass; Michael V. Milburn

The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-dependent transcription factor that is important in adipocyte differentiation and glucose homeostasis and which depends on interactions with co-activators, including steroid receptor co-activating factor-1 (SRC-1). Here we present the X-ray crystal structure of the human apo-PPAR-γ ligand-binding domain (LBD), at 2.2 Å resolution; this structure reveals a large binding pocket, which may explain the diversity of ligands for PPAR-γ. We also describe the ternary complex containing the PPAR-γ LBD, the antidiabetic ligand rosiglitazone (BRL49653), and 88 amino acids of human SRC-1 at 2.3 Å resolution. Glutamate and lysine residues that are highly conserved in LBDs of nuclear receptors form a ‘charge clamp’ that contacts backbone atoms of the LXXLL helices of SRC-1. These results, together with the observation that two consecutive LXXLL motifs of SRC-1 make identical contacts with both subunits of a PPAR-γ homodimer, suggest a general mechanism for the assembly of nuclear receptors with co-activators.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport

William R. Oliver; Jennifer L. Shenk; Mike R. Snaith; Caroline S. Russell; Kelli D. Plunket; Noni L. Bodkin; Michael C. Lewis; Deborah A. Winegar; Marcos Luis Sznaidman; Millard H. Lambert; H. Eric Xu; Daniel D. Sternbach; Steven A. Kliewer; Barbara C. Hansen; Timothy M. Willson

The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X.


Molecular Cell | 1999

Molecular recognition of fatty acids by peroxisome proliferator-activated receptors.

H. Eric Xu; Millard H. Lambert; Valerie G. Montana; Derek J. Parks; Steven G. Blanchard; Peter J. Brown; Daniel D. Sternbach; Jürgen M. Lehmann; G. Bruce Wisely; Timothy M. Willson; Steven A. Kliewer; Michael V. Milburn

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids (FAs) that regulate glucose and lipid homeostasis. We report the crystal structure of the PPAR delta ligand-binding domain (LBD) bound to either the FA eicosapentaenoic acid (EPA) or the synthetic fibrate GW2433. The carboxylic acids of EPA and GW2433 interact directly with the activation function 2 (AF-2) helix. The hydrophobic tail of EPA adopts two distinct conformations within the large hydrophobic cavity. GW2433 occupies essentially the same space as EPA bound in both conformations. These structures provide molecular insight into the propensity for PPARs to interact with a variety of synthetic and natural compounds, including FAs that vary in both chain length and degree of saturation.


Cell | 2002

Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition

Randy K. Bledsoe; Valerie G. Montana; Thomas B. Stanley; Chris J. Delves; Christopher J. Apolito; David D. McKee; Thomas G. Consler; Derek J. Parks; Eugene L. Stewart; Timothy M. Willson; Millard H. Lambert; John T. Moore; Kenneth H. Pearce; H. Eric Xu

Transcriptional regulation by the glucocorticoid receptor (GR) is mediated by hormone binding, receptor dimerization, and coactivator recruitment. Here, we report the crystal structure of the human GR ligand binding domain (LBD) bound to dexamethasone and a coactivator motif derived from the transcriptional intermediary factor 2. Despite structural similarity to other steroid receptors, the GR LBD adopts a surprising dimer configuration involving formation of an intermolecular beta sheet. Functional studies demonstrate that the novel dimer interface is important for GR-mediated activation. The structure also reveals an additional charge clamp that determines the binding selectivity of a coactivator and a distinct ligand binding pocket that explains its selectivity for endogenous steroid hormones. These results establish a framework for understanding the roles of protein-hormone and protein-protein interactions in GR signaling pathways.


Molecular Endocrinology | 2000

The Pregnane X Receptor: A Promiscuous Xenobiotic Receptor That Has Diverged during Evolution

Stacey A. Jones; Linda B. Moore; Jennifer L. Shenk; G. Bruce Wisely; Geraldine A. Hamilton; David D. McKee; Nicholas C. O. Tomkinson; Edward L. LeCluyse; Millard H. Lambert; Timothy M. Willson; Steven A. Kliewer; John T. Moore

Transcription of genes encoding cytochrome P450 3A (CYP3A) monooxygenases is induced by a variety of xenobiotics and natural steroids. There are marked differences in the compounds that induce CYP3A gene expression between species. Recently, the mouse and human pregnane X receptor (PXR) were shown to be activated by compounds that induce CYP3A expression. However, most studies of CYP3A regulation have been performed using rabbit and rat hepatocytes. Here, we report the cloning and characterization of PXR from these two species. PXR is remarkably divergent between species, with the rabbit, rat, and human receptors sharing only approximately 80% amino acid identity in their ligand-binding domains. This sequence divergence is reflected by marked pharmacological differences in PXR activation profiles. For example, the macrolide antibiotic rifampicin, the antidiabetic drug troglitazone, and the hypocholesterolemic drug SR12813 are efficacious activators of the human and rabbit PXR but have little activity on the rat and mouse PXR. Conversely, pregnane 16alpha-carbonitrile is a more potent activator of the rat and mouse PXR than the human and rabbit receptor. The activities of xenobiotics in PXR activation assays correlate well with their ability to induce CYP3A expression in primary hepatocytes. Through the use of a novel scintillation proximity binding assay, we demonstrate that many of the compounds that induce CYP3A expression bind directly to human PXR. These data establish PXR as a promiscuous xenobiotic receptor that has diverged during evolution.


Nature | 2002

Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα

H. Eric Xu; Thomas B. Stanley; Valerie G. Montana; Millard H. Lambert; Barry George Shearer; Jeffery E. Cobb; David D. McKee; Cristin M. Galardi; Kelli D. Plunket; Robert T. Nolte; Derek J. Parks; John T. Moore; Steven A. Kliewer; Timothy M. Willson; Julie B. Stimmel

Repression of gene transcription by nuclear receptors is mediated by interactions with co-repressor proteins such as SMRT and N-CoR, which in turn recruit histone deacetylases to the chromatin. Aberrant interactions between nuclear receptors and co-repressors contribute towards acute promyelocytic leukaemia and thyroid hormone resistance syndrome. The binding of co-repressors to nuclear receptors occurs in the unliganded state, and can be stabilized by antagonists. Here we report the crystal structure of a ternary complex containing the peroxisome proliferator-activated receptor-α ligand-binding domain bound to the antagonist GW6471 and a SMRT co-repressor motif. In this structure, the co-repressor motif adopts a three-turn α-helix that prevents the carboxy-terminal activation helix (AF-2) of the receptor from assuming the active conformation. Binding of the co-repressor motif is further reinforced by the antagonist, which blocks the AF-2 helix from adopting the active position. Biochemical analyses and structure-based mutagenesis indicate that this mode of co-repressor binding is highly conserved across nuclear receptors.


Molecular Cell | 2000

Asymmetry in the PPARγ/RXRα Crystal Structure Reveals the Molecular Basis of Heterodimerization among Nuclear Receptors

Robert T. Gampe; Valerie G. Montana; Millard H. Lambert; Aaron B. Miller; Randy K. Bledsoe; Michael V. Milburn; Steven A. Kliewer; Timothy M. Willson; H. Eric Xu

Abstract The nuclear receptor PPARγ/RXRα heterodimer regulates glucose and lipid homeostasis and is the target for the antidiabetic drugs GI262570 and the thiazolidinediones (TZDs). We report the crystal structures of the PPARγ and RXRα LBDs complexed to the RXR ligand 9- cis -retinoic acid (9cRA), the PPARγ agonist rosiglitazone or GI262570, and coactivator peptides. The PPARγ/RXRα heterodimer is asymmetric, with each LBD deviated ∼10° from the C2 symmetry, allowing the PPARγ AF-2 helix to interact with helices 7 and 10 of RXRα. The heterodimer interface is composed of conserved motifs in PPARγ and RXRα that form a coiled coil along helix 10 with additional charge interactions from helices 7 and 9. The structures provide a molecular understanding of the ability of RXR to heterodimerize with many nuclear receptors and of the permissive activation of the PPARγ/RXRα heterodimer by 9cRA.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors.

H.E. Xu; Millard H. Lambert; Valerie G. Montana; Kelli D. Plunket; Linda B. Moore; Jon L. Collins; J.A. Oplinger; Steven A. Kliewer; Robert T. Gampe; David D. McKee; John T. Moore; Timothy M. Willson

The peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of glucose, lipid, and cholesterol metabolism. We report the x-ray crystal structure of the ligand binding domain of PPARα (NR1C1) as a complex with the agonist ligand GW409544 and a coactivator motif from the steroid receptor coactivator 1. Through comparison of the crystal structures of the ligand binding domains of the three human PPARs, we have identified molecular determinants of subtype selectivity. A single amino acid, which is tyrosine in PPARα and histidine in PPARγ, imparts subtype selectivity for both thiazolidinedione and nonthiazolidinedione ligands. The availability of high-resolution cocrystal structures of the three PPAR subtypes will aid the design of drugs for the treatments of metabolic and cardiovascular diseases.


Bioorganic & Medicinal Chemistry Letters | 2003

Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARδ) - Synthesis and biological activity

Marcos L. Sznaidman; Curt D. Haffner; Patrick Maloney; Adam M. Fivush; Esther Chao; Donna M. Goreham; Michael Lawrence Sierra; Christelle LeGrumelec; H. Eric Xu; Valerie G. Montana; Millard H. Lambert; Timothy M. Willson; William R. Oliver; Daniel D. Sternbach

Abstract We report the synthesis and biological activity of a new series of small molecule agonists of the human Peroxisome Proliferator-Activated Receptor δ (PPARδ). Several hits were identified from our original libraries containing lipophilic carboxylic acids. Optimization of these hits by structure-guided design led to 7k (GW501516) and 7l (GW0742), which shows an EC50 of 1.1 nM against PPARδ with 1000-fold selectivity over the other human subtypes.


Cell | 2003

The Drosophila Orphan Nuclear Receptor DHR38 Mediates an Atypical Ecdysteroid Signaling Pathway

Keith D. Baker; Lisa M. Shewchuk; Tatiana Kozlova; Makoto Makishima; Annie M. Hassell; Bruce Wisely; Justin A. Caravella; Millard H. Lambert; Jeffrey L. Reinking; Henry M. Krause; Carl S. Thummel; Timothy M. Willson; David J. Mangelsdorf

Ecdysteroid pulses trigger the major developmental transitions during the Drosophila life cycle. These hormonal responses are thought to be mediated by the ecdysteroid receptor (EcR) and its heterodimeric partner Ultraspiracle (USP). We provide evidence for a second ecdysteroid signaling pathway mediated by DHR38, the Drosophila ortholog of the mammalian NGFI-B subfamily of orphan nuclear receptors. DHR38 also heterodimerizes with USP, and this complex responds to a distinct class of ecdysteroids in a manner that is independent of EcR. This response is unusual in that it does not involve direct binding of ecdysteroids to either DHR38 or USP. X-ray crystallographic analysis of DHR38 reveals the absence of both a classic ligand binding pocket and coactivator binding site, features that seem to be common to all NGFI-B subfamily members. Taken together, these data reveal the existence of a separate structural class of nuclear receptors that is conserved from fly to humans.

Collaboration


Dive into the Millard H. Lambert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Kliewer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge