Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milos Galic is active.

Publication


Featured researches published by Milos Galic.


Journal of Biology | 2008

Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance

Basil Honegger; Milos Galic; Katja Köhler; Franz Wittwer; Walter Brogiolo; Ernst Hafen; Hugo Stocker

Background Insulin and insulin-like growth factors (IGFs) signal through a highly conserved pathway and control growth and metabolism in both vertebrates and invertebrates. In mammals, insulin-like growth factor binding proteins (IGFBPs) bind IGFs with high affinity and modulate their mitogenic, anti-apoptotic and metabolic actions, but no functional homologs have been identified in invertebrates so far. Results Here, we show that the secreted Imaginal morphogenesis protein-Late 2 (Imp-L2) binds Drosophila insulin-like peptide 2 (Dilp2) and inhibits growth non-autonomously. Whereas over-expressing Imp-L2 strongly reduces size, loss of Imp-L2 function results in an increased body size. Imp-L2 is both necessary and sufficient to compensate Dilp2-induced hyperinsulinemia in vivo. Under starvation conditions, Imp-L2 is essential for proper dampening of insulin signaling and larval survival. Conclusion Imp-L2, the first functionally characterized insulin-binding protein in invertebrates, serves as a nutritionally controlled suppressor of insulin-mediated growth in Drosophila. Given that Imp-L2 and the human tumor suppressor IGFBP-7 show sequence homology in their carboxy-terminal immunoglobulin-like domains, we suggest that their common precursor was an ancestral insulin-binding protein.


Nature Cell Biology | 2012

External push and internal pull forces recruit curvature sensing N-BAR domain proteins to the plasma membrane

Milos Galic; Sangmoo Jeong; Feng-Chiao Tsai; Lydia Marie Joubert; Yi I. Wu; Klaus M. Hahn; Yi Cui; Tobias Meyer

Many of the more than 20 mammalian proteins with N-BAR domains control cell architecture and endocytosis by associating with curved sections of the plasma membrane. It is not well understood whether N-BAR proteins are recruited directly by processes that mechanically curve the plasma membrane or indirectly by plasma-membrane-associated adaptor proteins that recruit proteins with N-BAR domains that then induce membrane curvature. Here, we show that externally induced inward deformation of the plasma membrane by cone-shaped nanostructures (nanocones) and internally induced inward deformation by contracting actin cables both trigger recruitment of isolated N-BAR domains to the curved plasma membrane. Markedly, live-cell imaging in adherent cells showed selective recruitment of full-length N-BAR proteins and isolated N-BAR domains to plasma membrane sub-regions above nanocone stripes. Electron microscopy confirmed that N-BAR domains are recruited to local membrane sites curved by nanocones. We further showed that N-BAR domains are periodically recruited to curved plasma membrane sites during local lamellipodia retraction in the front of migrating cells. Recruitment required myosin-II-generated force applied to plasma-membrane-connected actin cables. Together, our results show that N-BAR domains can be directly recruited to the plasma membrane by external push or internal pull forces that locally curve the plasma membrane.


eLife | 2014

Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons

Milos Galic; Feng-Chiao Tsai; Sean R. Collins; Maja Matis; Samuel Bandara; Tobias Meyer

In the vertebrate central nervous system, exploratory filopodia transiently form on dendritic branches to sample the neuronal environment and initiate new trans-neuronal contacts. While much is known about the molecules that control filopodia extension and subsequent maturation into functional synapses, the mechanisms that regulate initiation of these dynamic, actin-rich structures have remained elusive. Here, we find that filopodia initiation is suppressed by recruitment of ArhGAP44 to actin-patches that seed filopodia. Recruitment is mediated by binding of a membrane curvature-sensing ArhGAP44 N-BAR domain to plasma membrane sections that were deformed inward by acto-myosin mediated contractile forces. A GAP domain in ArhGAP44 triggers local Rac-GTP hydrolysis, thus reducing actin polymerization required for filopodia formation. Additionally, ArhGAP44 expression increases during neuronal development, concurrent with a decrease in the rate of filopodia formation. Together, our data reveals a local auto-regulatory mechanism that limits initiation of filopodia via protein recruitment to nanoscale membrane deformations. DOI: http://dx.doi.org/10.7554/eLife.03116.001


BioEssays | 2015

Polarized trafficking provides spatial cues for planar cell polarization within a tissue

Milos Galic; Maja Matis

Planar cell polarity, the polarization of cells within the plane of the epithelium, orthogonal to the apical‐basal axis, is essential for a growing list of developmental events, and – over the last 15 years – has evolved from a little‐studied curiosity in Drosophila to the subject of a substantial research enterprise. In that time, it has been recognized that two molecular systems are responsible for polarization of most tissues: Both the “core” Frizzled system and the “global” Fat/Dachsous/Four‐jointed system produce molecular asymmetry within cells, and contribute to morphological polarization. In this review, we discuss recent findings on the molecular mechanism that links “global” directional signals with local coordinated polarity.


Developmental Dynamics | 2012

A universal analysis tool for the detection of asymmetric signal distribution in microscopic images

Maja Matis; Jeffrey D. Axelrod; Milos Galic

Background: Polarization of tissue is achieved by asymmetric distribution of proteins and organelles within individual cells. However, existing quantitative assays to measure this asymmetry in an automated and unbiased manner suffer from significant limitations. Results: Here, we report a new way to assess protein and organelle localization in tissue based on correlative fluorescence analysis. As a proof of principle, we successfully characterized planar cell polarity dependent asymmetry in developing Drosophila melanogaster tissues on the single cell level using fluorescence cross‐correlation. Conclusions: Systematic modulation of signal strength and distribution show that fluorescence cross‐correlation reliably detects asymmetry over a broad parameter space. The novel method described here produces robust, rapid, and unbiased measurement of biometrical properties of cell components in live tissue that is readily applicable in other model systems. Developmental Dynamics 241:1301–1309, 2012.


Frontiers in Synaptic Neuroscience | 2016

Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function

Isabell Begemann; Milos Galic

Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications.


Bioarchitecture | 2015

Force-control at cellular membranes

Milos Galic; Isabell Begemann; Abhiyan Viplav; Maja Matis

Force-regulation at cellular membranes relies on dynamic molecular platforms that integrate intra- and extracellular signals to control cell shape and function. To correctly respond to a continuously changing environment, activity of these platforms needs to be tightly controlled in space and time. Over the last few years, curvature-dependent mechano-chemical signal translation—a receptor-independent signaling mechanism where physical forces at the plasma membrane trigger nanoscale membrane deformations that are then translated into chemical signal transduction cascades—has emerged as a new signaling principle that cells use to regulate forces at the membrane. However, until recently, technical limitations have precluded studies of this force-induced curvature-dependent signaling at the physiological scale. Here, we comment on recent advancements that allow studying curvature-dependent signaling at membranes, and discuss processes where it may be involved in. Considering its general impact on cell function, a particular focus will be put on the curvature-dependence of feedback loops that control actin-based forces at cellular membranes.


Molecular Biology of the Cell | 2016

Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking

Tanumoy Saha; Isabel Rathmann; Abhiyan Viplav; Sadhana Panzade; Isabell Begemann; Christiane Rasch; Jürgen Klingauf; Maja Matis; Milos Galic

A novel approach based on the convex-hull algorithm is used for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Testing of filopodia formation in silico, in vitro, and in vivo validates the robustness and sensitivity of the proposed approach.


Philosophical Transactions of the Royal Society B | 2018

Self-organization across scales: from molecules to organisms

Tanumoy Saha; Milos Galic

Creating ordered structures from chaotic environments is at the core of biological processes at the subcellular, cellular and organismic level. In this perspective, we explore the physical as well as biological features of two prominent concepts driving self-organization, namely phase transition and reaction–diffusion, before closing with a discussion on open questions and future challenges associated with studying self-organizing systems. This article is part of the theme issue ‘Self-organization in cell biology’.


Scientific Reports | 2016

Stochastic Micro-Pattern for Automated Correlative Fluorescence - Scanning Electron Microscopy.

Isabell Begemann; Abhiyan Viplav; Christiane Rasch; Milos Galic

Studies of cellular surface features gain from correlative approaches, where live cell information acquired by fluorescence light microscopy is complemented by ultrastructural information from scanning electron micrographs. Current approaches to spatially align fluorescence images with scanning electron micrographs are technically challenging and often cost or time-intensive. Relying exclusively on open-source software and equipment available in a standard lab, we have developed a method for rapid, software-assisted alignment of fluorescence images with the corresponding scanning electron micrographs via a stochastic gold micro-pattern. Here, we provide detailed instructions for micro-pattern production and image processing, troubleshooting for critical intermediate steps, and examples of membrane ultra-structures aligned with the fluorescence signal of proteins enriched at such sites. Together, the presented method for correlative fluorescence – scanning electron microscopy is versatile, robust and easily integrated into existing workflows, permitting image alignment with accuracy comparable to existing approaches with negligible investment of time or capital.

Collaboration


Dive into the Milos Galic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge