Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miloš Hašan is active.

Publication


Featured researches published by Miloš Hašan.


international conference on computer graphics and interactive techniques | 2007

Matrix row-column sampling for the many-light problem

Miloš Hašan; Kavita Bala

Rendering complex scenes with indirect illumination, high dynamic range environment lighting, and many direct light sources remains a challenging problem. Prior work has shown that all these effects can be approximated by many point lights. This paper presents a scalable solution to the many-light problem suitable for a GPU implementation. We view the problem as a large matrix of sample-light interactions; the ideal final image is the sum of the matrix columns. We propose an algorithm for approximating this sum by sampling entire rows and columns of the matrix on the GPU using shadow mapping. The key observation is that the inherent structure of the transfer matrix can be revealed by sampling just a small number of rows and columns. Our prototype implementation can compute the light transfer within a few seconds for scenes with indirect and environment illumination, area lights, complex geometry and arbitrary shaders. We believe this approach can be very useful for rapid previewing in applications like cinematic and architectural lighting design.


international conference on computer graphics and interactive techniques | 2006

Direct-to-indirect transfer for cinematic relighting

Miloš Hašan; Kavita Bala

This paper presents an interactive GPU-based system for cinematic relighting with multiple-bounce indirect illumination from a fixed view-point. We use a deep frame-buffer containing a set of view samples, whose indirect illumination is recomputed from the direct illumination on a large set of gather samples, distributed around the scene. This direct-to-indirect transfer is a linear transform which is particularly large, given the size of the view and gather sets. This makes it hard to precompute, store and multiply with. We address this problem by representing the transform as a set of sparse matrices encoded in wavelet space. A hierarchical construction is used to impose a wavelet basis on the unstructured gather cloud, and an image-based approach is used to map the sparse matrix computations to the GPU. We precompute the transfer matrices using a hierarchical algorithm and a variation of photon mapping in less than three hours on one processor. We achieve high-quality indirect illumination at 10-20 frames per second for complex scenes with over 2 million polygons, with diffuse and glossy materials, and arbitrary direct lighting models (expressed using shaders). We compute per-pixel indirect illumination without the need of irradiance caching or other subsampling techniques.


international conference on computer graphics and interactive techniques | 2010

Physical reproduction of materials with specified subsurface scattering

Miloš Hašan; Martin Fuchs; Wojciech Matusik; Hanspeter Pfister; Szymon Rusinkiewicz

We investigate a complete pipeline for measuring, modeling, and fabricating objects with specified subsurface scattering behaviors. The process starts with measuring the scattering properties of a given set of base materials, determining their radial reflection and transmission profiles. We describe a mathematical model that predicts the profiles of different stackings of base materials, at arbitrary thicknesses. In an inverse process, we can then specify a desired reflection profile and compute a layered composite material that best approximates it. Our algorithm efficiently searches the space of possible combinations of base materials, pruning unsatisfactory states imposed by physical constraints. We validate our process by producing both homogeneous and heterogeneous composites fabricated using a multi-material 3D printer. We demonstrate reproductions that have scattering properties approximating complex materials.


eurographics | 2014

Scalable Realistic Rendering with Many-Light Methods

Carsten Dachsbacher; Jaroslav Křivánek; Miloš Hašan; Adam Arbree; Bruce Walter; Jan Novák

Recent years have seen increasing attention and significant progress in many‐light rendering, a class of methods for efficient computation of global illumination. The many‐light formulation offers a unified mathematical framework for the problem reducing the full lighting transport simulation to the calculation of the direct illumination from many virtual light sources. These methods are unrivaled in their scalability: they are able to produce plausible images in a fraction of a second but also converge to the full solution over time. In this state‐of‐the‐art report, we give an easy‐to‐follow, introductory tutorial of the many‐light theory; provide a comprehensive, unified survey of the topic with a comparison of the main algorithms; discuss limitations regarding materials and light transport phenomena and present a vision to motivate and guide future research. We will cover both the fundamental concepts as well as improvements, extensions and applications of many‐light rendering.


international conference on computer graphics and interactive techniques | 2009

Virtual spherical lights for many-light rendering of glossy scenes

Miloš Hašan; Jaroslav Křivánek; Bruce Walter; Kavita Bala

In this paper, we aim to lift the accuracy limitations of many-light algorithms by introducing a new light type, the virtual spherical light (VSL). The illumination contribution of a VSL is computed over a non-zero solid angle, thus eliminating the illumination spikes that virtual point lights used in traditional many-light methods are notorious for. The VSL enables application of many-light approaches in scenes with glossy materials and complex illumination that could previously be rendered only by much slower algorithms. By combining VSLs with the matrix row-column sampling algorithm, we achieve high-quality images in one to four minutes, even in scenes where path tracing or photon mapping take hours to converge.


international conference on computer graphics and interactive techniques | 2014

Rendering glints on high-resolution normal-mapped specular surfaces

Ling-Qi Yan; Miloš Hašan; Wenzel Jakob; Jason Lawrence; Steve Marschner; Ravi Ramamoorthi

Complex specular surfaces under sharp point lighting show a fascinating glinty appearance, but rendering it is an unsolved problem. Using Monte Carlo pixel sampling for this purpose is impractical: the energy is concentrated in tiny highlights that take up a minuscule fraction of the pixel. We instead compute an accurate solution using a completely different deterministic approach. Our method considers the true distribution of normals on a surface patch seen through a single pixel, which can be highly complex. We show how to evaluate this distribution efficiently, assuming a Gaussian pixel footprint and Gaussian intrinsic roughness. We also take advantage of hierarchical pruning of position-normal space to rapidly find texels that might contribute to a given normal distribution evaluation. Our results show complex, temporally varying glints from materials such as bumpy plastics, brushed and scratched metals, metallic paint and ocean waves.


international conference on computer graphics and interactive techniques | 2014

Discrete stochastic microfacet models

Wenzel Jakob; Miloš Hašan; Ling-Qi Yan; Jason Lawrence; Ravi Ramamoorthi; Steve Marschner

This paper investigates rendering glittery surfaces, ones which exhibit shifting random patterns of glints as the surface or viewer moves. It applies both to dramatically glittery surfaces that contain mirror-like flakes and also to rough surfaces that exhibit more subtle small scale glitter, without which most glossy surfaces appear too smooth in close-up. These phenomena can in principle be simulated by high-resolution normal maps, but maps with tiny features create severe aliasing problems under narrow-angle illumination. In this paper we present a stochastic model for the effects of random subpixel structures that generates glitter and spatial noise that behave correctly under different illumination conditions and viewing distances, while also being temporally coherent so that they look right in motion. The model is based on microfacet theory, but it replaces the usual continuous microfacet distribution with a discrete distribution of scattering particles on the surface. A novel stochastic hierarchy allows efficient evaluation in the presence of large numbers of random particles, without ever having to consider the particles individually. This leads to a multiscale procedural BRDF that is readily implemented in standard rendering systems, and which converges back to the smooth case in the limit.


eurographics | 2008

Tensor clustering for rendering many-light animations

Miloš Hašan; Edgar Velázquez-Armendáriz; Kavita Bala

Rendering animations of scenes with deformable objects, camera motion, and complex illumination, including indirect lighting and arbitrary shading, is a long‐standing challenge. Prior work has shown that complex lighting can be accurately approximated by a large collection of point lights. In this formulation, rendering of animation sequences becomes the problem of efficiently shading many surface samples from many lights across several frames. This paper presents a tensor formulation of the animated many‐light problem, where each element of the tensor expresses the contribution of one light to one pixel in one frame. We sparsely sample rows and columns of the tensor, and introduce a clustering algorithm to select a small number of representative lights to efficiently approximate the animation. Our algorithm achieves efficiency by reusing representatives across frames, while minimizing temporal flicker. We demonstrate our algorithm in a variety of scenes that include deformable objects, complex illumination and arbitrary shading and show that a surprisingly small number of representative lights is sufficient for high quality rendering. We believe out algorithm will find practical use in applications that require fast previews of complex animation.


international conference on computer graphics and interactive techniques | 2010

Combining global and local virtual lights for detailed glossy illumination

Tomáš Davidovič; Jaroslav Křivánek; Miloš Hašan; Philipp Slusallek; Kavita Bala

Accurately rendering glossy materials in design applications, where previewing and interactivity are important, remains a major challenge. While many fast global illumination solutions have been proposed, all of them work under limiting assumptions on the materials and lighting in the scene. In the presence of many glossy (directionally scattering) materials, fast solutions either fail or degenerate to inefficient, brute-force simulations of the underlying light transport. In particular, many-light algorithms are able to provide fast approximations by clamping elements of the light transport matrix, but they eliminate the part of the transport that contributes to accurate glossy appearance. In this paper we introduce a solution that separately solves for the global (low-rank, dense) and local (highrank, sparse) illumination components. For the low-rank component we introduce visibility clustering and approximation, while for the high-rank component we introduce a local light technique to correct for the missing illumination. Compared to competing techniques we achieve superior gloss rendering in minutes, making our technique suitable for applications such as industrial design and architecture, where material appearance is critical.


international conference on computer graphics and interactive techniques | 2013

Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures

Shuang Zhao; Miloš Hašan; Ravi Ramamoorthi; Kavita Bala

The highest fidelity images to date of complex materials like cloth use extremely high-resolution volumetric models. However, rendering such complex volumetric media is expensive, with brute-force path tracing often the only viable solution. Fortunately, common volumetric materials (fabrics, finished wood, synthesized solid textures) are structured, with repeated patterns approximated by tiling a small number of exemplar blocks. In this paper, we introduce a precomputation-based rendering approach for such volumetric media with repeated structures based on a modular transfer formulation. We model each exemplar block as a voxel grid and precompute voxel-to-voxel, patch-to-patch, and patch-to-voxel flux transfer matrices. At render time, when blocks are tiled to produce a high-resolution volume, we accurately compute low-order scattering, with modular flux transfer used to approximate higher-order scattering. We achieve speedups of up to 12× over path tracing on extremely complex volumes, with minimal loss of quality. In addition, we demonstrate that our approach outperforms photon mapping on these materials.

Collaboration


Dive into the Miloš Hašan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling-Qi Yan

University of California

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Křivánek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge