Miloš Lukáč
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miloš Lukáč.
Central European Journal of Chemistry | 2010
Miloš Lukáč; Ivan Lacko; Marián Bukovský; Zuzana Kyselová; Janka Karlovská; Branislav Horváth; Ferdinand Devínsky
We synthesized nine quaternary ammonium compounds (QUATs) starting from phenylalanine, N-alkyl-N,N-dimethyl-(1-hydroxy-3-phenylpropyl)-2-ammonium bromides, which were prepared as optically pure substances. Five compounds were prepared as S-enantiomers and four compounds as R-enantiomers. These compounds were evaluated by their activities against bacteria and fungi. Three microbial strains were used in the study: the gram-negative bacteria Escherichia coli, the gram-positive bacteria Staphylococcus aureus and the fungi Candida albicans. The activities were expressed as minimum bactericidal or fungicidal concentrations (MBC). The most active compounds were (2S)-N-tetradecyl-N,N-dimethyl-(1-hydroxy-3-phenylpropyl)-2-ammonium bromide and (2R)-N-tetradecyl-N,N-dimethyl-(1-hydroxy-3-phenylpropyl)-2-ammonium bromide, with MBC values exceeding those of commercial benzalkoniumbromide (BAB) used as standard. The relationships between structure and biological activity of the tested QUATs were quantified by the bilinear model (QSAR) and are discussed.
Journal of Separation Science | 2014
Veronika Šolínová; Martin Maxmilian Kaiser; Miloš Lukáč; Zlatko Janeba; Václav Kašička
CE methods have been developed for the chiral analysis of new types of six acyclic nucleoside phosphonates, nucleotide analogs bearing [(3-hydroxypropan-2-yl)-1H-1,2,3-triazol-4-yl]phosphonic acid, 2-[(diisopropoxyphosphonyl)methoxy]propanoic acid, or 2-(phosphonomethoxy)propanoic acid moieties attached to adenine, guanine, 2,6-diaminopurine, uracil, and 5-bromouracil nucleobases, using neutral and cationic cyclodextrins as chiral selectors. With the exception of the 5-bromouracil-derived acyclic nucleoside phosphonate with a 2-(phosphonomethoxy)propanoic acid side chain, the R and S enantiomers of the other five acyclic nucleoside phosphonates were successfully separated with sufficient resolutions, 1.51-2.94, within a reasonable time, 13-28 min, by CE in alkaline BGEs (50 mM sodium tetraborate adjusted with NaOH to pH 9.60, 9.85, and 10.30, respectively) containing 20 mg/mL β-cyclodextrin as the chiral selector. A baseline separation of the R and S enantiomers of the 5-bromouracil-derived acyclic nucleoside phosphonate with 2-(phosphonomethoxy)propanoic acid side chain was achieved within a short time of 7 min by CE in an acidic BGE (20:40 mM Tris/phosphate, pH 2.20) using 60 mg/mL quaternary ammonium β-cyclodextrin chiral selector. The developed methods were applied for the assessment of the enantiomeric purity of the above acyclic nucleoside phosphonates. The preparations of all these compounds were found to be synthesized in pure enantiomeric forms. Using UV absorption detection at 206 nm, their concentration detection limits were in the low micromolar range.
Bioorganic & Medicinal Chemistry Letters | 2009
Miloš Lukáč; Martin Mrva; Eva Fischer-Fodor; Ivan Lacko; Marián Bukovský; Natalia Miklášová; František Ondriska; Ferdinand Devínsky
A series of dialkylphosphocholines were prepared and evaluated for their biological activity. The antiprotozoal activity was determined against Acanthamoeba lugdunensis. Compound 15 exhibited excellent trophocidal activity. None of the tested dialkylphosphocholines exhibited better fungicidal activity against Candida albicans than miltefosine. The antineoplastic activity was determined against HeLa. The most cytotoxic was compound 10, which was more active against tumor cells as against normal cells.
European Journal of Medicinal Chemistry | 2013
Miloš Lukáč; Martin Mrva; Mária Garajová; Gabriela Mojžišová; Lenka Varinská; Ján Mojžiš; Marián Sabol; Janka Kubincová; Hana Haragová; František Ondriska; Ferdinand Devínsky
A series of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride have been synthesized. Their physicochemical properties were also investigated. The critical micelle concentration (cmc), the surface tension value at the cmc (γcmc), and the surface area at the surface saturation per head group (Acmc) were determined by means of surface tension measurements. The prepared compounds exhibit significant cytotoxic, antifungal and antiprotozoal activities. Alkylphosphocholines and alkylphosphohomocholines possess higher antifungal activity against Candida albicans in comparison with quaternary ammonium compounds in general. However, quaternary ammonium compounds exhibit significantly higher activity against human tumor cells and pathogenic free-living amoebae Acanthamoeba lugdunensis and Acanthamoeba quina compared to alkylphosphocholines. The relationship between structure, physicochemical properties and biological activity of the tested compounds is discussed.
Journal of Colloid and Interface Science | 2010
Miloš Lukáč; Martin Pisárčik; Ivan Lacko; Ferdinand Devínsky
The physico-chemical properties of dialkylamino and nitrogen heterocyclic analogues of hexadecylphosphocholine (HPC) and cetyltrimethylammonium bromide (CTAB) were investigated. The surface properties, such as the critical micelle concentration (cmc), the surface tension value at the cmc (gamma(cmc)), and the surface area at the surface saturation per head group (A(cmc)) were determined by means of surface tension measurements. Micelle size was determined using the dynamic light scattering method. The influence of dialkylamino groups and heterocyclic ring size on surface-active properties was investigated. Surface activity and micellar size of prepared analogues of HPC and CTAB were mutually compared.
Journal of Parasitology | 2011
Martin Mrva; Mária Garajová; Miloš Lukáč; František Ondriska
Abstract Hexadecylphosphocholine (miltefosine) is an anticancer drug active in vitro against various protozoan parasites, and recently used for the treatment of disseminated Acanthamoeba infection. In the present study, we present results of weak cytotoxic activity of this potential amoebicidal agent for 2 of 3 clinical isolates of Acanthamoeba spp. Although the inhibition effect for all tested concentrations was apparent, and showed 100% eradication of trophozoites of Acanthamoeba castellanii strain at a concentration of 62.5 µM after 24 hr, the strains Acanthamoeba sp. and Acanthamoeba lugdunensis exhibited low sensitivity to hexadecylphosphocholine, even in high concentrations. The determined minimal trophocidal concentrations were 250 µM for Acanthamoeba sp. and 500 µM for A. lugdunensis after 24 hr of exposure. Although hexadecylphosphocholine is a potential agent for treatment of Acanthamoeba keratitis and systemic infections, in clinical practice the possible insusceptibility of the amoebic strain should be considered for optimizing therapy.
International Journal of Pharmaceutics | 2012
Miloš Lukáč; Mária Garajová; Martin Mrva; Marián Bukovský; František Ondriska; Eszter Máriássy; Ferdinand Devínsky; Ivan Lacko
Synthesis of five alkylphosphocholines with branched alkyl chains (Isophol-PCs) with different length of alkyl chains was described. Isophol(8)-PC and Isophol(12)-PC represent new compounds. The physico-chemical properties of Isophol-PCs were determined, critical micelle concentration and types of formed aggregates in aqueous solutions were investigated. The biological activities of Isophol-PCs have been studied for the first time in the present study. Antimicrobial activities of alkylphosphocholines were studied against bacteria (Staphylococcus aureus, Escherichia coli), yeast (Candida albicans) and pathogenic free-living amoebae (Acanthamoeba lugdunensis and Acanthamoeba quina). A. lugdunensis and A. quina are relatively insusceptible to action of miltefosine (standard compound of alkylphosphocholines) and therefore they are good models for studies of amoebicidal action of the investigated compounds. Relationship between structure, physico-chemical and biological activities of Isophol-PCs was discussed. S. aureus and C. albicans were sensitive to action of Isophol(16)-PC, Isophol(20)-PC. E. coli was not sensitive to action of all studied alkylphosphocholines in the concentrations equal to, or less than 10mM. Among all the synthesized compounds, Isophol(16)-PC had the highest level of activity against both strains of Acanthamoeba. The minimum trophocidal concentrations of Isophol(16)-PC against A. lugdunensis and A. quina are about four times lower than the minimum trophocidal concentrations of miltefosine against both strains.
Central European Journal of Biology | 2009
Miloš Lukáč
Four species of the genus, Bryoria were found in the Sučí Potok Valley: B. capilaris (Ach.) Brodo & D. Hawksw., B. fuscescens (Gyeln.) Brodo & D. Hawksw., B. implexa (Hoffm.) Brodo & D. Hawksw., B. nadvornikiana (Gyeln.) Brodo & D. Hawksw. The most common species in the valley was B. implexa. Four chemotypes of this lichen were recognized.
European Journal of Pharmaceutical Sciences | 2016
Monika Pietrzyńska; Joanna Zembrzuska; Rafał Tomczak; Jakub Mikołajczyk; Danuta Rusinska-Roszak; Adam Voelkel; Tomasz Buchwald; Josef Jampilek; Miloš Lukáč; Ferdinand Devínsky
A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software.
European Journal of Medicinal Chemistry | 2015
Lukáš Timko; Eva Fischer-Fodor; Mária Garajová; Martin Mrva; Gabriela Chereches; František Ondriska; Marián Bukovský; Miloš Lukáč; Janka Karlovská; Janka Kubincová; Ferdinand Devínsky
Twelve derivatives of hexadecylphosphocholine (miltefosine) were synthesized to determine how the position and length of the alkyl chain within the molecule influence their biological activities. The prepared alkylphosphocholines have the same molecular formula as miltefosine. Activity of the compounds was studied against a spectrum of tumour cells, two species of protozoans, bacteria and yeast. Antitumour efficacy of some alkylphosphocholines measured up on MCF-7, A2780, HUT-78 and THP-1 cell lines was higher than that of miltefosine. The compounds showed antiprotozoal activity against Acanthamoeba lugdunensis and Acanthamoeba quina. Some of them also possess fungicidal activity against Candida albicans equal to miltefosine. No antibacterial activity was observed against Staphylococcus aureus and Escherichia coli. A difference in position of a long hydrocarbon chain within the structure with maximum efficacy was observed for antitumour, antiprotozoal and antifungal activity.